Quantitative version of Weyl’s law

Pub Date : 2023-08-20 DOI:10.1007/s10455-023-09922-z
Nikhil Savale
{"title":"Quantitative version of Weyl’s law","authors":"Nikhil Savale","doi":"10.1007/s10455-023-09922-z","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a general estimate for the Weyl remainder of an elliptic, semiclassical pseudodifferential operator in terms of volumes of recurrence sets for the Hamilton flow of its principal symbol. This quantifies earlier results of Volovoy (Comm Partial Differential Equations 15:1509–1563, 1990; Ann Global Anal Geom 8:127–136, 1990). Our result particularly improves Weyl remainder exponents for compact Lie groups and surfaces of revolution. And gives a quantitative estimate for Bérard’s Weyl remainder in terms of the maximal expansion rate and topological entropy of the geodesic flow.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09922-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09922-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a general estimate for the Weyl remainder of an elliptic, semiclassical pseudodifferential operator in terms of volumes of recurrence sets for the Hamilton flow of its principal symbol. This quantifies earlier results of Volovoy (Comm Partial Differential Equations 15:1509–1563, 1990; Ann Global Anal Geom 8:127–136, 1990). Our result particularly improves Weyl remainder exponents for compact Lie groups and surfaces of revolution. And gives a quantitative estimate for Bérard’s Weyl remainder in terms of the maximal expansion rate and topological entropy of the geodesic flow.

Abstract Image

分享
查看原文
魏尔定律的定量版本
我们用主符号Hamilton流的递推集的体积证明了半经典拟微分算子的Weyl余数的一般估计。这量化了Volovoy的早期结果(Comm偏微分方程15:1509-15631990;Ann Global Anal Geom 8:127-1361990)。我们的结果特别改进了紧致李群和公转曲面的Weyl余数指数。并根据测地流的最大展开率和拓扑熵,给出了Bérard的Weyl余数的定量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信