Nonlinear Auto-Regressive with Exogenous Inputs (NARX) Modelling of Hydroponics Water pH Level in response to Acid and Alkaline Solutions

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. F. Saaid, M. K. Nordin, I. Yassin, N. Tahir
{"title":"Nonlinear Auto-Regressive with Exogenous Inputs (NARX) Modelling of Hydroponics Water pH Level in response to Acid and Alkaline Solutions","authors":"M. F. Saaid, M. K. Nordin, I. Yassin, N. Tahir","doi":"10.18421/tem123-04","DOIUrl":null,"url":null,"abstract":"Nutrients are essential to optimising plant growth. However, the introduction of fertiliser in a hydroponics setup influences the pH level of the nutrient solution. This, in turn, could affect plants' growth as many types of plants require a specific pH range to grow optimally. Conventional hydroponics cultivation performs pH adjustment manually – a meticulous and error-prone process. Manual adjustment of pH solutions is prone to estimation errors, particularly when the pH levels change drastically due to the slow response of the solution to the addition of alkaline or acidic mixtures and sensitivity to minute errors in mixture delivery. For these reasons, a model to estimate the solution's pH would help improve the delivery accuracy of the alkaline and acidic mixtures. Past research offers minimal study to optimally construct the model from a System Identification (SI) perspective. This study represents a pH water neutralisation behaviour using the Nonlinear Autoregressive model with Exogeneous Inputs (NARX). The project begins with input and output data acquisition, leading to the development of the NARX model. Model performance was then evaluated by analysing the model fit and residual distribution.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem123-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Nutrients are essential to optimising plant growth. However, the introduction of fertiliser in a hydroponics setup influences the pH level of the nutrient solution. This, in turn, could affect plants' growth as many types of plants require a specific pH range to grow optimally. Conventional hydroponics cultivation performs pH adjustment manually – a meticulous and error-prone process. Manual adjustment of pH solutions is prone to estimation errors, particularly when the pH levels change drastically due to the slow response of the solution to the addition of alkaline or acidic mixtures and sensitivity to minute errors in mixture delivery. For these reasons, a model to estimate the solution's pH would help improve the delivery accuracy of the alkaline and acidic mixtures. Past research offers minimal study to optimally construct the model from a System Identification (SI) perspective. This study represents a pH water neutralisation behaviour using the Nonlinear Autoregressive model with Exogeneous Inputs (NARX). The project begins with input and output data acquisition, leading to the development of the NARX model. Model performance was then evaluated by analysing the model fit and residual distribution.
具有外源输入的非线性自回归(NARX)模拟水培水pH值对酸碱溶液的响应
营养素对优化植物生长至关重要。然而,在水培设置中引入化肥会影响营养液的pH水平。这反过来又可能影响植物的生长,因为许多类型的植物需要特定的pH范围才能最佳生长。传统的水培栽培是手动调节pH值的,这是一个细致且容易出错的过程。手动调节pH溶液容易产生估计误差,特别是当pH水平由于溶液对添加碱性或酸性混合物的反应缓慢以及对混合物输送中微小误差的敏感性而急剧变化时。由于这些原因,估计溶液pH的模型将有助于提高碱性和酸性混合物的输送精度。过去的研究提供了从系统识别(SI)角度优化构建模型的最少研究。本研究使用具有外源输入的非线性自回归模型(NARX)来表示pH-水的中和行为。该项目从输入和输出数据采集开始,导致NARX模型的开发。然后通过分析模型拟合和残差分布来评估模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信