Periodic points of self-maps of products of lens spaces $L(3)\times L(3)$

IF 0.7 4区 数学 Q2 MATHEMATICS
J. Jezierski
{"title":"Periodic points of self-maps of products of lens spaces $L(3)\\times L(3)$","authors":"J. Jezierski","doi":"10.12775/tmna.2022.053","DOIUrl":null,"url":null,"abstract":"Let $f\\colon M\\to M$ be a self-map of a compact manifold and $n\\in \\mathbb{N}$.\nThe least number of $n$-periodic points in the smooth homotopy class of $f$ may be smaller than in the continuous homotopy class. We ask: for which self-maps\n$f\\colon M\\to M$ the two minima are the same, for each prescribed multiplicity?\n In the study of self-maps of tori and compact Lie groups a necessary condition appears.\nHere we give a criterion which helps to decide whether the necessary condition is also sufficient.\nWe apply this result to show that for self-maps of the product of the lens space $M=L(3)\\times L(3)$ the necessary condition is also sufficient.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $f\colon M\to M$ be a self-map of a compact manifold and $n\in \mathbb{N}$. The least number of $n$-periodic points in the smooth homotopy class of $f$ may be smaller than in the continuous homotopy class. We ask: for which self-maps $f\colon M\to M$ the two minima are the same, for each prescribed multiplicity? In the study of self-maps of tori and compact Lie groups a necessary condition appears. Here we give a criterion which helps to decide whether the necessary condition is also sufficient. We apply this result to show that for self-maps of the product of the lens space $M=L(3)\times L(3)$ the necessary condition is also sufficient.
透镜空间积L(3)\乘以L(3)$的自映射的周期点
设$f\冒号M\到M$是紧流形的自映射,$n\在\mathbb{n}$中。f的光滑同伦类中n个周期点的最小个数可能小于连续同伦类。我们问:对于哪个自映射$f\冒号M\到M$两个最小值是相同的,对于每个规定的多重性?在环面和紧李群的自映射研究中,出现了一个必要条件。这里我们给出一个判别必要条件是否也是充分条件的判据。我们应用这一结果证明了透镜空间积的自映射$M=L(3)\乘以L(3)$的必要条件也是充分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信