Wavelet-Picard iterative method for solving singular fractional nonlinear partial differential equations with initial and boundary conditions

IF 1.1 Q2 MATHEMATICS, APPLIED
A. Mohammadi, N. Aghazadeh, S. Rezapour
{"title":"Wavelet-Picard iterative method for solving singular fractional nonlinear partial differential equations with initial and boundary conditions","authors":"A. Mohammadi, N. Aghazadeh, S. Rezapour","doi":"10.22034/CMDE.2020.31627.1479","DOIUrl":null,"url":null,"abstract":"The present study applies the Picard iterative method to nonlinear singular partial fractional differential equations. The Haar and second-kind Chebyshev wavelets operational matrix of fractional integration will be used to solve problems combining linearization technique with the Picard method. The singular problem will be converted to an algebraic system of equations, which can be easily solved. Numerical examples are provided to illustrate the efficiency and accuracy of the technique.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.31627.1479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The present study applies the Picard iterative method to nonlinear singular partial fractional differential equations. The Haar and second-kind Chebyshev wavelets operational matrix of fractional integration will be used to solve problems combining linearization technique with the Picard method. The singular problem will be converted to an algebraic system of equations, which can be easily solved. Numerical examples are provided to illustrate the efficiency and accuracy of the technique.
求解具有初始条件和边界条件的奇异分数阶非线性偏微分方程的小波-皮卡德迭代法
本研究将Picard迭代方法应用于非线性奇异偏分式微分方程。将分数积分的Haar和第二类Chebyshev小波运算矩阵应用于线性化技术和Picard方法相结合的问题。奇异问题将转化为代数方程组,可以很容易地求解。数值算例说明了该技术的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信