Yoga of commutators in DSER elementary orthogonal group

Pub Date : 2018-11-15 DOI:10.1007/s40062-018-0223-5
A. A. Ambily
{"title":"Yoga of commutators in DSER elementary orthogonal group","authors":"A. A. Ambily","doi":"10.1007/s40062-018-0223-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the Dickson-Siegel-Eichler-Roy (DSER) elementary orthogonal subgroup of the orthogonal group of a non-degenerate quadratic space with a hyperbolic summand over a commutative ring, introduced by Roy. We prove a set of commutator relations among the elementary generators of the DSER elementary orthogonal group. As an application, we prove that this group is perfect and an action version of the Quillen’s local-global principle for this group is proved. This affirmatively answers a question of Rao in his Ph.D. thesis.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0223-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0223-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we consider the Dickson-Siegel-Eichler-Roy (DSER) elementary orthogonal subgroup of the orthogonal group of a non-degenerate quadratic space with a hyperbolic summand over a commutative ring, introduced by Roy. We prove a set of commutator relations among the elementary generators of the DSER elementary orthogonal group. As an application, we prove that this group is perfect and an action version of the Quillen’s local-global principle for this group is proved. This affirmatively answers a question of Rao in his Ph.D. thesis.

分享
查看原文
DSER初等正交群中换向子的瑜伽
本文研究了Roy在交换环上引入的具有双曲和的非退化二次空间的正交群的Dickson-Siegel-Eichler-Roy (DSER)初等正交子群。证明了DSER初等正交群的初等生成元之间的一组交换子关系。作为一个应用,我们证明了这个群是完美的,并证明了这个群的Quillen局部-全局原理的一个动作版本。这肯定地回答了Rao博士论文中的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信