Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations

IF 0.8 Q2 MATHEMATICS
Sadeq Taha Abdulazeez, Mahmut Modanlı, A. M. Husien
{"title":"Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations","authors":"Sadeq Taha Abdulazeez, Mahmut Modanlı, A. M. Husien","doi":"10.17512/jamcm.2022.4.01","DOIUrl":null,"url":null,"abstract":". The numerical solutions to the nonlinear pseudo-hyperbolic partial differential equation with nonlocal conditions are presented in this study. This equation is solved using the homotopy analysis technique (HAM) and the variational iteration method (VIM). Both strategies are compared and contrasted in terms of approximate and accurate solutions. The results show that the HAM technique is more appropriate, effective, and close to the exact solution than the VIM method. Finally, the graphical representations of the obtained results are given","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2022.4.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. The numerical solutions to the nonlinear pseudo-hyperbolic partial differential equation with nonlocal conditions are presented in this study. This equation is solved using the homotopy analysis technique (HAM) and the variational iteration method (VIM). Both strategies are compared and contrasted in terms of approximate and accurate solutions. The results show that the HAM technique is more appropriate, effective, and close to the exact solution than the VIM method. Finally, the graphical representations of the obtained results are given
求解非线性伪双曲型偏微分方程的数值格式方法
本文给出了具有非局部条件的非线性拟双曲型偏微分方程的数值解。该方程的求解采用了同宗分析技术(HAM)和变分迭代法(VIM)。两种策略在近似解和精确解方面进行了比较和对比。结果表明,HAM方法比VIM方法更适合、更有效、更接近精确解。最后,给出了所得结果的图形表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
30
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信