Jaroslaw Buczy'nski, Jaroslaw A. Wi'sniewski, Andrzej Weber
{"title":"Algebraic torus actions on contact manifolds","authors":"Jaroslaw Buczy'nski, Jaroslaw A. Wi'sniewski, Andrzej Weber","doi":"10.4310/jdg/1659987892","DOIUrl":null,"url":null,"abstract":"We prove LeBrun-Salamon Conjecture in low dimensions. More precisely, we show that a contact Fano manifold X of dimension 2n+1 that has reductive automorphism group of rank at least n-2 is necessarily homogeneous. This implies that any positive quaternion-Kahler manifold of real dimension at most 16 is necessarily a symmetric space, one of the Wolf spaces. A similar result about contact Fano manifolds of dimension at most 9 with reductive automorphism group also holds. The main difficulty in approaching the conjecture is how to recognize a homogeneous space in an abstract variety. We contribute to such problem in general, by studying the action of algebraic torus on varieties and exploiting Bialynicki-Birula decomposition and equivariant Riemann-Roch theorems. From the point of view of T-varieties (that is, varieties with a torus action), our result is about high complexity T-manifolds. The complexity here is at most (dim X+5)/2 with dim X arbitrarily high, but we require this special (contact) structure of X. Previous methods for studying T-varieties in general usually only apply for complexity at most 2 or 3.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1659987892","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26
Abstract
We prove LeBrun-Salamon Conjecture in low dimensions. More precisely, we show that a contact Fano manifold X of dimension 2n+1 that has reductive automorphism group of rank at least n-2 is necessarily homogeneous. This implies that any positive quaternion-Kahler manifold of real dimension at most 16 is necessarily a symmetric space, one of the Wolf spaces. A similar result about contact Fano manifolds of dimension at most 9 with reductive automorphism group also holds. The main difficulty in approaching the conjecture is how to recognize a homogeneous space in an abstract variety. We contribute to such problem in general, by studying the action of algebraic torus on varieties and exploiting Bialynicki-Birula decomposition and equivariant Riemann-Roch theorems. From the point of view of T-varieties (that is, varieties with a torus action), our result is about high complexity T-manifolds. The complexity here is at most (dim X+5)/2 with dim X arbitrarily high, but we require this special (contact) structure of X. Previous methods for studying T-varieties in general usually only apply for complexity at most 2 or 3.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.