Algebraic torus actions on contact manifolds

IF 1.3 1区 数学 Q1 MATHEMATICS
Jaroslaw Buczy'nski, Jaroslaw A. Wi'sniewski, Andrzej Weber
{"title":"Algebraic torus actions on contact manifolds","authors":"Jaroslaw Buczy'nski, Jaroslaw A. Wi'sniewski, Andrzej Weber","doi":"10.4310/jdg/1659987892","DOIUrl":null,"url":null,"abstract":"We prove LeBrun-Salamon Conjecture in low dimensions. More precisely, we show that a contact Fano manifold X of dimension 2n+1 that has reductive automorphism group of rank at least n-2 is necessarily homogeneous. This implies that any positive quaternion-Kahler manifold of real dimension at most 16 is necessarily a symmetric space, one of the Wolf spaces. A similar result about contact Fano manifolds of dimension at most 9 with reductive automorphism group also holds. The main difficulty in approaching the conjecture is how to recognize a homogeneous space in an abstract variety. We contribute to such problem in general, by studying the action of algebraic torus on varieties and exploiting Bialynicki-Birula decomposition and equivariant Riemann-Roch theorems. From the point of view of T-varieties (that is, varieties with a torus action), our result is about high complexity T-manifolds. The complexity here is at most (dim X+5)/2 with dim X arbitrarily high, but we require this special (contact) structure of X. Previous methods for studying T-varieties in general usually only apply for complexity at most 2 or 3.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1659987892","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

Abstract

We prove LeBrun-Salamon Conjecture in low dimensions. More precisely, we show that a contact Fano manifold X of dimension 2n+1 that has reductive automorphism group of rank at least n-2 is necessarily homogeneous. This implies that any positive quaternion-Kahler manifold of real dimension at most 16 is necessarily a symmetric space, one of the Wolf spaces. A similar result about contact Fano manifolds of dimension at most 9 with reductive automorphism group also holds. The main difficulty in approaching the conjecture is how to recognize a homogeneous space in an abstract variety. We contribute to such problem in general, by studying the action of algebraic torus on varieties and exploiting Bialynicki-Birula decomposition and equivariant Riemann-Roch theorems. From the point of view of T-varieties (that is, varieties with a torus action), our result is about high complexity T-manifolds. The complexity here is at most (dim X+5)/2 with dim X arbitrarily high, but we require this special (contact) structure of X. Previous methods for studying T-varieties in general usually only apply for complexity at most 2 or 3.
接触流形上的代数环面作用
我们证明了低维的LeBrun-Salamon猜想。更准确地说,我们证明了具有秩至少为n-2的约化自同构群的维数为2n+1的接触法诺流形X必然是齐次的。这意味着任何实维数不超过16的正四元数- kahler流形必然是对称空间,即Wolf空间之一。关于最大维数为9的具有约化自同构群的接触范诺流形也有类似的结果。处理这个猜想的主要困难是如何在抽象变化中识别齐次空间。我们通过研究代数环对变量的作用,利用Bialynicki-Birula分解和等变Riemann-Roch定理,对这类问题作出了一般性的贡献。从t变量(即具有环面作用的变量)的角度来看,我们的结果是关于高复杂性t流形的。这里的复杂度最多为(dim X+5)/2,其中dim X任意高,但我们需要X的这种特殊(接触)结构。以往一般研究t变的方法通常只适用于复杂度最多为2或3的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信