{"title":"Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential","authors":"Xiaoping Wang, Fulai Chen, Fangfang Liao","doi":"10.1515/anona-2022-0319","DOIUrl":null,"url":null,"abstract":"Abstract In this article, under some weaker assumptions on a > 0 a\\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+\\phi u=-a{| u| }^{p-2}u+f\\left(u),& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi ={u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. where p ∈ 2 , 12 5 p\\in \\left(2,\\frac{12}{5}\\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+\\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi ={u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0319","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this article, under some weaker assumptions on a > 0 a\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+\phi u=-a{| u| }^{p-2}u+f\left(u),& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. where p ∈ 2 , 12 5 p\in \left(2,\frac{12}{5}\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.