Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaoping Wang, Fulai Chen, Fangfang Liao
{"title":"Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential","authors":"Xiaoping Wang, Fulai Chen, Fangfang Liao","doi":"10.1515/anona-2022-0319","DOIUrl":null,"url":null,"abstract":"Abstract In this article, under some weaker assumptions on a > 0 a\\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+\\phi u=-a{| u| }^{p-2}u+f\\left(u),& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi ={u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. where p ∈ 2 , 12 5 p\\in \\left(2,\\frac{12}{5}\\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+\\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi ={u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0319","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this article, under some weaker assumptions on a > 0 a\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+\phi u=-a{| u| }^{p-2}u+f\left(u),& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. where p ∈ 2 , 12 5 p\in \left(2,\frac{12}{5}\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.
零质量势Schrödinger-Poisson系统非平凡解的存在性和不存在性
摘要本文在> 0 a \gt 0和f f的一些较弱的假设下,研究了以下具有零质量势能的Schrödinger-Poisson系统- Δ u + φ u = - a∣u∣p - 2 u + f (u), x∈R 3, - Δ φ = u 2, x∈R 3, \left {\begin{array}{ll}-\Delta u+\phi u=-a{| u| }^{p-2}u+f\left(u),& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right的非平凡径向解的存在性和非平凡解的不存在性。式中p∈2,125 p \in\left (2, \frac{12}{5}\right)。特别地,作为以下系统的推论:−Δ u + φ u =−∣u∣p−2 u +∣u∣q−2 u, x∈R 3,−Δ φ = u 2, x∈R 3, \left {\begin{array}{ll}-\Delta u+\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right。得到了非平凡径向解存在的一个充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信