Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation

Pub Date : 2022-08-27 DOI:10.1007/s10463-022-00846-2
Toshiaki Tsukurimichi, Yu Inatsu, Vo Nguyen Le Duy, Ichiro Takeuchi
{"title":"Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation","authors":"Toshiaki Tsukurimichi,&nbsp;Yu Inatsu,&nbsp;Vo Nguyen Le Duy,&nbsp;Ichiro Takeuchi","doi":"10.1007/s10463-022-00846-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider conditional selective inference (SI) for a linear model estimated after outliers are removed from the data. To apply the conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing conditional SIs cannot be directly applied to our problem because they are applicable to the case where the selection events can be represented by linear or quadratic constraints. We propose a conditional SI method for popular robust regressions such as least-absolute-deviation regression and Huber regression by introducing a new computational method using a convex optimization technique called homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00846-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we consider conditional selective inference (SI) for a linear model estimated after outliers are removed from the data. To apply the conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing conditional SIs cannot be directly applied to our problem because they are applicable to the case where the selection events can be represented by linear or quadratic constraints. We propose a conditional SI method for popular robust regressions such as least-absolute-deviation regression and Huber regression by introducing a new computational method using a convex optimization technique called homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.

Abstract Image

分享
查看原文
稳健回归的条件选择推理和分段线性同伦延拓的离群值检测
在本文中,我们考虑条件选择推理(SI)的线性模型估计后,从数据中去除异常值。为了应用条件SI框架,有必要描述鲁棒方法如何识别异常值的事件。不幸的是,现有的条件si不能直接应用于我们的问题,因为它们适用于选择事件可以用线性或二次约束表示的情况。我们通过引入一种新的计算方法,使用一种称为同伦方法的凸优化技术,提出了一种适用于最小绝对偏差回归和Huber回归等常用鲁棒回归的条件SI方法。我们的研究表明,所提出的条件SI方法适用于广泛的鲁棒回归和离群值检测方法,并且在合成数据和实际数据实验中都具有良好的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信