Singular genuine rigidity

IF 1.1 3区 数学 Q1 MATHEMATICS
L. Florit, Felippe Guimarães
{"title":"Singular genuine rigidity","authors":"L. Florit, Felippe Guimarães","doi":"10.4171/cmh/488","DOIUrl":null,"url":null,"abstract":"We extend the concept of genuine rigidity of submanifolds by allowing mild singularities, mainly to obtain new global rigidity results and unify the known ones. As one of the consequences, we simultaneously extend and unify Sacksteder and Dajczer-Gromoll theorems by showing that any compact $n$-dimensional submanifold of ${\\mathbb R}^{n+p}$ is singularly genuinely rigid in ${\\mathbb R}^{n+q}$, for any $q < \\min\\{5,n\\} - p$. Unexpectedly, the singular theory becomes much simpler and natural than the regular one, even though all technical codimension assumptions, needed in the regular case, are removed.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/488","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/488","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We extend the concept of genuine rigidity of submanifolds by allowing mild singularities, mainly to obtain new global rigidity results and unify the known ones. As one of the consequences, we simultaneously extend and unify Sacksteder and Dajczer-Gromoll theorems by showing that any compact $n$-dimensional submanifold of ${\mathbb R}^{n+p}$ is singularly genuinely rigid in ${\mathbb R}^{n+q}$, for any $q < \min\{5,n\} - p$. Unexpectedly, the singular theory becomes much simpler and natural than the regular one, even though all technical codimension assumptions, needed in the regular case, are removed.
奇异真刚度
我们通过允许温和奇点来扩展子流形真刚度的概念,主要是为了获得新的全局刚度结果并统一已知的结果。作为结果之一,我们同时扩展和统一了Sacksteder和Dajczer-Gromoll定理,证明了对于任何$q<\min\{5,n\}-p$,${\mathbb R}^{n+p}$的任何紧致$n$维子流形在${\math bb R}^{n+q}$中是奇异真刚性的。出乎意料的是,奇异理论变得比正则理论简单自然得多,尽管正则情况下需要的所有技术余维假设都被删除了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信