Zhenqing Li, Xiangnan He, Jianxiang Cheng, Honggeng Li, Yuan-Fang Zhang, Xiaojuan Shi, Kai Yu, H. Yang, Qiuxuan Ge
{"title":"Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method","authors":"Zhenqing Li, Xiangnan He, Jianxiang Cheng, Honggeng Li, Yuan-Fang Zhang, Xiaojuan Shi, Kai Yu, H. Yang, Qiuxuan Ge","doi":"10.1080/19475411.2021.1952335","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications. Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors, ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible. However, dehydration is a challenging issue for the latter. Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration. However, the reported multi-step approaches are generally time-consuming. Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors, yet requires a self-built digital-light-processing-based multimaterial 3D printer. Here, we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes. This method only requires a UV projector/lamp with photomasks; the chemicals are commercially available; the protocols for preparing the polymer precursors are friendly to users without chemistry background. Moreover, the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter. The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices. Graphical Abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"12 1","pages":"256 - 268"},"PeriodicalIF":4.5000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19475411.2021.1952335","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2021.1952335","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications. Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors, ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible. However, dehydration is a challenging issue for the latter. Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration. However, the reported multi-step approaches are generally time-consuming. Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors, yet requires a self-built digital-light-processing-based multimaterial 3D printer. Here, we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes. This method only requires a UV projector/lamp with photomasks; the chemicals are commercially available; the protocols for preparing the polymer precursors are friendly to users without chemistry background. Moreover, the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter. The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices. Graphical Abstract
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.