Copies of $c_0(\tau)$ in Saphar tensor products

Pub Date : 2022-12-04 DOI:10.7146/math.scand.a-132282
Vinícius Morelli Cortes
{"title":"Copies of $c_0(\\tau)$ in Saphar tensor products","authors":"Vinícius Morelli Cortes","doi":"10.7146/math.scand.a-132282","DOIUrl":null,"url":null,"abstract":"Let $X, Y$ be Banach spaces, τ an infinite cardinal and $1 \\leq p < \\infty $. We extend a result by E. Oja by showing that if $X$ has a boundedly complete unconditional basis and either $X \\widehat{\\otimes}_{g_p} Y$ or $X \\widehat{\\otimes}_{\\varepsilon _p} Y$ contains a complemented copy of $c_0(\\tau )$, then $Y$ contains a complemented copy of $c_0(\\tau )$. We show also that if α is a uniform crossnorm, $X \\widehat{\\otimes}_\\alpha Y$ contains a (complemented) copy of $c_0(\\tau )$ and the cofinality of τ is strictly greater than the density of $X$, then $Y$ also contains a (complemented) copy of $c_0(\\tau )$. As an application, we obtain a result concerning complemented copies of $\\ell _1(\\tau )$ in $X \\widehat{\\otimes}_\\alpha Y$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-132282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $X, Y$ be Banach spaces, τ an infinite cardinal and $1 \leq p < \infty $. We extend a result by E. Oja by showing that if $X$ has a boundedly complete unconditional basis and either $X \widehat{\otimes}_{g_p} Y$ or $X \widehat{\otimes}_{\varepsilon _p} Y$ contains a complemented copy of $c_0(\tau )$, then $Y$ contains a complemented copy of $c_0(\tau )$. We show also that if α is a uniform crossnorm, $X \widehat{\otimes}_\alpha Y$ contains a (complemented) copy of $c_0(\tau )$ and the cofinality of τ is strictly greater than the density of $X$, then $Y$ also contains a (complemented) copy of $c_0(\tau )$. As an application, we obtain a result concerning complemented copies of $\ell _1(\tau )$ in $X \widehat{\otimes}_\alpha Y$.
分享
查看原文
Saphar张量积中$c_0(\tau)$的副本
设$X,Y$为Banach空间,τ为无穷基数,$1\leqp<\infty$。我们扩展了E.Oja的结果,证明了如果$X$具有有界完全无条件基,并且$X\widehat{\otimes}_{g_p}Y$或$X\Wideht{\utimes}_{\varepsilon\p}Y$包含$c_0(\tau)$的补拷贝,那么$Y$包含$c_0(\tao)$的补码拷贝。我们还证明,如果α是一个一致的交叉范数,$X\widehat{\otimes}_\alpha-Y$包含$c_0(\tau)$的(补)拷贝,并且τ的余数严格大于$X$的密度,那么$Y$也包含$c_0(\tao)$的一个(补)副本。作为一个应用,我们得到了关于$X\widehat{\otimes}_\alpha Y$中$\ell_1(\tau)$的补拷贝的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信