A structure theorem for poorly anticoncentrated polynomials of Gaussians and applications to the study of polynomial threshold functions

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
D. Kane
{"title":"A structure theorem for poorly anticoncentrated polynomials of Gaussians and applications to the study of polynomial threshold functions","authors":"D. Kane","doi":"10.1214/16-AOP1097","DOIUrl":null,"url":null,"abstract":"We prove a structural result for degree-dd polynomials. In particular, we show that any degree-dd polynomial, pp can be approximated by another polynomial, p0p0, which can be decomposed as some function of polynomials q1,…,qmq1,…,qm with qiqi normalized and m=Od(1)m=Od(1), so that if XX is a Gaussian random variable, the probability distribution on (q1(X),…,qm(X))(q1(X),…,qm(X)) does not have too much mass in any small box. \n \nUsing this result, we prove improved versions of a number of results about polynomial threshold functions, including producing better pseudorandom generators, obtaining a better invariance principle, and proving improved bounds on noise sensitivity.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":"45 1","pages":"1612-1679"},"PeriodicalIF":2.1000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/16-AOP1097","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AOP1097","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

We prove a structural result for degree-dd polynomials. In particular, we show that any degree-dd polynomial, pp can be approximated by another polynomial, p0p0, which can be decomposed as some function of polynomials q1,…,qmq1,…,qm with qiqi normalized and m=Od(1)m=Od(1), so that if XX is a Gaussian random variable, the probability distribution on (q1(X),…,qm(X))(q1(X),…,qm(X)) does not have too much mass in any small box. Using this result, we prove improved versions of a number of results about polynomial threshold functions, including producing better pseudorandom generators, obtaining a better invariance principle, and proving improved bounds on noise sensitivity.
Gaussians弱反凝聚多项式的一个结构定理及其在多项式阈值函数研究中的应用
我们证明了dd次多项式的一个结构结果。特别地,我们证明了任何次数的dd多项式pp都可以用另一个多项式p0p0来近似,p0p0可以分解为多项式q1,…,qmq1,..,qm的一些函数,qiqi归一化并且m=Od(1)m=Od(1),使得如果XX是高斯随机变量,则(q1(X),…,qm(X))(q1。利用这个结果,我们证明了关于多项式阈值函数的许多结果的改进版本,包括产生更好的伪随机生成器,获得更好的不变性原理,以及证明了噪声灵敏度的改进边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信