Ultimate complexity for numerical algorithms

IF 0.4 Q4 MATHEMATICS, APPLIED
J. Hoeven, Grégoire Lecerf
{"title":"Ultimate complexity for numerical algorithms","authors":"J. Hoeven, Grégoire Lecerf","doi":"10.1145/3419048.3419049","DOIUrl":null,"url":null,"abstract":"Most numerical algorithms are designed for single or double precision floating point arithmetic, and their complexity is measured in terms of the total number of floating point operations. The resolution of problems with high condition numbers (e.g. when approaching a singularity or degeneracy) may require higher working precisions, in which case it is important to take the precision into account when doing complexity analyses. In this paper, we propose a new \"ultimate complexity\" model, which focuses on analyzing the cost of numerical algorithms for \"sufficiently large\" precisions. As an example application we will present an ultimately softly linear time algorithm for modular composition of univariate polynomials.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"54 1","pages":"1 - 13"},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3419048.3419049","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419048.3419049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Most numerical algorithms are designed for single or double precision floating point arithmetic, and their complexity is measured in terms of the total number of floating point operations. The resolution of problems with high condition numbers (e.g. when approaching a singularity or degeneracy) may require higher working precisions, in which case it is important to take the precision into account when doing complexity analyses. In this paper, we propose a new "ultimate complexity" model, which focuses on analyzing the cost of numerical algorithms for "sufficiently large" precisions. As an example application we will present an ultimately softly linear time algorithm for modular composition of univariate polynomials.
数值算法的极限复杂性
大多数数值算法都是为单精度或双精度浮点运算而设计的,它们的复杂度是根据浮点运算的总数来衡量的。具有高条件数的问题的解决(例如,当接近奇点或退化时)可能需要更高的工作精度,在这种情况下,在进行复杂性分析时考虑精度是很重要的。在本文中,我们提出了一个新的“极限复杂性”模型,该模型侧重于分析数值算法在“足够大”精度下的成本。作为一个应用实例,我们将提出一种用于单变量多项式的模组合的最终软线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信