{"title":"High visual resolution interpretation: The case for virtual seismic reality","authors":"S. Lynch","doi":"10.1190/tle42080541.1","DOIUrl":null,"url":null,"abstract":"The twin fields of virtual and augmented reality have revolutionized the gaming and entertainment industries; however, they have had almost no impact on the field of scientific visualization. This is especially true in oil and gas exploration where we continue to visualize seismic data using low visual resolution displays developed in the 1960s and 1970s. Variable density and grayscale displays were a revolution in themselves, allowing us to transition from strictly manual interpretation on paper sections to increasingly automatic interpretations on workstations. This transition was instrumental in allowing us to find the oil necessary to meet the demands of emerging economies. These displays have brought us this far, but they cannot take us into the future. Today, we are exploring for targets whose seismic expression is close to the limits of spatial and temporal resolution and may be below the visual resolution of conventional seismic displays. If we are to meet the current demands of developed economies and the increasing demands of emerging economies, we must replace these, now technologically archaic, low visual resolution displays with high visual resolution displays. For that, we need virtual reality. At its inception, virtual reality was largely ignored by the exploration industry. Today, it has evolved to the point that it could revolutionize scientific visualization, and seismic visualization in particular, as much as it revolutionized gaming and entertainment. I introduce the subject of high visual resolution interpretation and present examples of seismic data in virtual seismic reality.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42080541.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The twin fields of virtual and augmented reality have revolutionized the gaming and entertainment industries; however, they have had almost no impact on the field of scientific visualization. This is especially true in oil and gas exploration where we continue to visualize seismic data using low visual resolution displays developed in the 1960s and 1970s. Variable density and grayscale displays were a revolution in themselves, allowing us to transition from strictly manual interpretation on paper sections to increasingly automatic interpretations on workstations. This transition was instrumental in allowing us to find the oil necessary to meet the demands of emerging economies. These displays have brought us this far, but they cannot take us into the future. Today, we are exploring for targets whose seismic expression is close to the limits of spatial and temporal resolution and may be below the visual resolution of conventional seismic displays. If we are to meet the current demands of developed economies and the increasing demands of emerging economies, we must replace these, now technologically archaic, low visual resolution displays with high visual resolution displays. For that, we need virtual reality. At its inception, virtual reality was largely ignored by the exploration industry. Today, it has evolved to the point that it could revolutionize scientific visualization, and seismic visualization in particular, as much as it revolutionized gaming and entertainment. I introduce the subject of high visual resolution interpretation and present examples of seismic data in virtual seismic reality.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.