String diagram rewrite theory III: Confluence with and without Frobenius

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
F. Bonchi, F. Gadducci, A. Kissinger, Pawel Soboci'nski, F. Zanasi
{"title":"String diagram rewrite theory III: Confluence with and without Frobenius","authors":"F. Bonchi, F. Gadducci, A. Kissinger, Pawel Soboci'nski, F. Zanasi","doi":"10.1017/S0960129522000123","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we address the problem of proving confluence for string diagram rewriting, which was previously shown to be characterised combinatorially as double-pushout rewriting with interfaces (DPOI) on (labelled) hypergraphs. For standard DPO rewriting without interfaces, confluence for terminating rewriting systems is, in general, undecidable. Nevertheless, we show here that confluence for DPOI, and hence string diagram rewriting, is decidable. We apply this result to give effective procedures for deciding local confluence of symmetric monoidal theories with and without Frobenius structure by critical pair analysis. For the latter, we introduce the new notion of path joinability for critical pairs, which enables finitely many joins of a critical pair to be lifted to an arbitrary context in spite of the strong non-local constraints placed on rewriting in a generic symmetric monoidal theory.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"32 1","pages":"829 - 869"},"PeriodicalIF":0.4000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129522000123","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract In this paper, we address the problem of proving confluence for string diagram rewriting, which was previously shown to be characterised combinatorially as double-pushout rewriting with interfaces (DPOI) on (labelled) hypergraphs. For standard DPO rewriting without interfaces, confluence for terminating rewriting systems is, in general, undecidable. Nevertheless, we show here that confluence for DPOI, and hence string diagram rewriting, is decidable. We apply this result to give effective procedures for deciding local confluence of symmetric monoidal theories with and without Frobenius structure by critical pair analysis. For the latter, we introduce the new notion of path joinability for critical pairs, which enables finitely many joins of a critical pair to be lifted to an arbitrary context in spite of the strong non-local constraints placed on rewriting in a generic symmetric monoidal theory.
弦图重写理论III:有和没有Frobenius的合流
摘要在本文中,我们解决了弦图重写的合流证明问题,该问题以前被证明是(标记的)超图上的带接口的双推出重写(DPOI)的组合特征。对于没有接口的标准DPO重写,终止重写系统的汇合通常是不可确定的。尽管如此,我们在这里展示了DPOI的汇合,以及因此的字符串图重写,是可判定的。我们将这一结果应用于通过临界对分析来确定具有和不具有Frobenius结构的对称单调理论的局部汇合的有效程序。对于后者,我们引入了关键对的路径可连接性的新概念,它使一个关键对的有限多个连接能够提升到任意上下文中,尽管在一般对称单调理论中对重写施加了强大的非局部约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信