Presentations of categories of modules using the Cautis–Kamnitzer–Morrison principle

IF 0.6 2区 数学 Q3 MATHEMATICS
Giulian Wiggins
{"title":"Presentations of categories of modules using the Cautis–Kamnitzer–Morrison principle","authors":"Giulian Wiggins","doi":"10.4171/JCA/27","DOIUrl":null,"url":null,"abstract":"We use duality theorems to obtain presentations of some categories of modules. To derive these presentations we generalize a result of Cautis-Kamnitzer-Morrison [arXiv:1210.6437v4]: \nLet $\\mathfrak{g}$ be a reductive Lie algebra, and $A$ an algebra, both over $\\mathbb{C}$. Consider a $(\\mathfrak{g} , A)$-bimodule $P$ in which \n(a) $P$ has a multiplicity free decomposition into irreducible $(\\mathfrak{g} , A)$-bimodules. \n(b) $P$ is \"saturated\" i.e. for any irreducible $\\mathfrak{g}$-module $V$, if every weight of $V$ is a weight of $P$, then $V$ is a submodule of $P$. \nWe show that statements (a) and (b) are necessary and sufficient conditions for the existence of an isomorphism of categories between the full subcategory of $\\mathcal{R}ep A$ whose objects are $\\mathfrak{g}$-weight spaces of $P$, and a quotient of the category version of Lusztig's idempotented form, $\\dot{{\\mathcal{U}}} \\mathfrak{g}$, formed by setting to zero all morphisms factoring through a collection of objects in $\\dot{{\\mathcal{U}}} \\mathfrak{g}$ depending on $P$. This is essentially a categorical version of the identification of generalized Schur algebras with quotients of Lusztig's idempotented forms given by Doty in [arXiv:math/0305208]. \nApplied to Schur-Weyl Duality we obtain a diagrammatic presentation of the full subcategory of $\\mathcal{R}ep S_d$ whose objects are direct sums of permutation modules, as well as an explicit description of the $\\otimes$-product of morphisms between permutation modules. Applied to Brauer-Schur-Weyl Duality we obtain diagrammatic presentations of subcategories of $\\mathcal{R}ep \\mathcal{B}_{d}^{(- 2n)}$ and $\\mathcal{R}ep \\mathcal{B}_{r,s}^{(n)}$ whose Karoubi completion is the whole of $\\mathcal{R}ep \\mathcal{B}_{d}^{(- 2n)}$ and $\\mathcal{R}ep \\mathcal{B}_{r,s}^{(n)}$ respectively.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/27","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/27","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use duality theorems to obtain presentations of some categories of modules. To derive these presentations we generalize a result of Cautis-Kamnitzer-Morrison [arXiv:1210.6437v4]: Let $\mathfrak{g}$ be a reductive Lie algebra, and $A$ an algebra, both over $\mathbb{C}$. Consider a $(\mathfrak{g} , A)$-bimodule $P$ in which (a) $P$ has a multiplicity free decomposition into irreducible $(\mathfrak{g} , A)$-bimodules. (b) $P$ is "saturated" i.e. for any irreducible $\mathfrak{g}$-module $V$, if every weight of $V$ is a weight of $P$, then $V$ is a submodule of $P$. We show that statements (a) and (b) are necessary and sufficient conditions for the existence of an isomorphism of categories between the full subcategory of $\mathcal{R}ep A$ whose objects are $\mathfrak{g}$-weight spaces of $P$, and a quotient of the category version of Lusztig's idempotented form, $\dot{{\mathcal{U}}} \mathfrak{g}$, formed by setting to zero all morphisms factoring through a collection of objects in $\dot{{\mathcal{U}}} \mathfrak{g}$ depending on $P$. This is essentially a categorical version of the identification of generalized Schur algebras with quotients of Lusztig's idempotented forms given by Doty in [arXiv:math/0305208]. Applied to Schur-Weyl Duality we obtain a diagrammatic presentation of the full subcategory of $\mathcal{R}ep S_d$ whose objects are direct sums of permutation modules, as well as an explicit description of the $\otimes$-product of morphisms between permutation modules. Applied to Brauer-Schur-Weyl Duality we obtain diagrammatic presentations of subcategories of $\mathcal{R}ep \mathcal{B}_{d}^{(- 2n)}$ and $\mathcal{R}ep \mathcal{B}_{r,s}^{(n)}$ whose Karoubi completion is the whole of $\mathcal{R}ep \mathcal{B}_{d}^{(- 2n)}$ and $\mathcal{R}ep \mathcal{B}_{r,s}^{(n)}$ respectively.
使用Cautis–Kamnitzer–Morrison原理演示模块类别
我们使用对偶定理来获得某些类别的模的表示。为了得到这些表示,我们推广了Cautis-Kamnitzer Morrison[arXiv:1210.6437v4]的一个结果:设$\mathfrak{g}$是一个还原李代数,$a$是一个子代数,都在$\mathbb{C}$上。考虑一个$(\mathfrak{g},a)$-双模$P$,其中(a)$P$具有不可重分解为不可约的$(\math frak{g},a)$-双模的重数自由分解。(b) $P$是“饱和的”,即对于任何不可约的$\mathfrak{g}$-模$V$,如果$V$的每个权重都是$P$的权重,那么$V$是$P+的子模。我们证明了陈述(a)和(b)是$\mathcal的全子范畴之间范畴同构存在的充要条件{R}ep一个$,其对象是$\mathfrak{g}$-$P$的权重空间,以及Lusztig的幂等形式的类别版本$\dot{\mathcal{U}}}\ mathfrak{g}$的商,该商是通过根据$P$将通过$\dot{\mathical{U}}}\ mathfrac{g}$中的对象集合分解的所有态射设置为零而形成的。这本质上是Doty在[arXiv:math/0305208]中给出的具有Lusztig幂等形式商的广义Schur代数的识别的分类版本。应用于Schur-Weyl对偶,我们得到了$\mathcal的全子范畴的图解表示{R}epS_d$,其对象是置换模的直和,以及置换模之间态射的$\otimes$-乘积的显式描述。应用于Brauer-Schur-Weyl对偶,我们得到$\mathcal的子范畴的图解表示{R}ep\数学{B}_{d} ^{(-2n)}$和$\mathcal{R}ep\数学{B}_{r,s}^{(n)}$,其卡鲁比完备是$\mathcal的整体{R}ep\数学{B}_{d} ^{(-2n)}$和$\mathcal{R}ep\数学{B}_{r,s}^{(n)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信