On thermodynamic and ultraviolet stability bounds for bosonic lattice QCD models in Euclidean dimensions d = 2,3,4

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
P. A. F. da Veiga, M. O'carroll
{"title":"On thermodynamic and ultraviolet stability bounds for bosonic lattice QCD models in Euclidean dimensions d = 2,3,4","authors":"P. A. F. da Veiga, M. O'carroll","doi":"10.1142/s0129055x23500046","DOIUrl":null,"url":null,"abstract":"We prove thermodynamic and ultraviolet stable stability bounds for lattice scalar QCD quantum models, with multiflavor real or complex scalar Bose matter fields and a compact, connected gauge Lie group [Formula: see text], [Formula: see text] with Lie algebra dimension [Formula: see text]. Our models are defined on a finite hypercubic lattice [Formula: see text], [Formula: see text], [Formula: see text], with [Formula: see text], even, sites on a side, [Formula: see text] sites, and with free boundary conditions. The models action is a sum of a minimally coupled Bose-gauge part and a Wilson pure-gauge plaquette action. We use local, scaled scalar multiflavor Bose fields. The scaling is global, [Formula: see text]-dependent and noncanonical, and corresponds to an a priori renormalization. The Wilson action is a sum over positive plaquette actions times a factor [Formula: see text], with the gauge coupling [Formula: see text] in [Formula: see text], [Formula: see text]. By local gauge invariance, to eliminate the excess of gauge variables, sometimes we use an enhanced temporal gauge, leaving only [Formula: see text] for [Formula: see text], retained bonds. Fixing this gauge does not alter the value of the partition function. Considering the original physical, unscaled partition function [Formula: see text], where [Formula: see text] is the unscaled (bare) hopping parameter and [Formula: see text] are the boson fields bare masses, and letting [Formula: see text] and [Formula: see text], we show that the scaled partition function [Formula: see text] satisfies the thermodynamic and ultraviolet stable stability bounds [Formula: see text], with finite constants [Formula: see text], independent of the lattice size [Formula: see text] of [Formula: see text] and the spacing [Formula: see text]. For the normalized finite-lattice free energy [Formula: see text], a finite thermodynamic limit ([Formula: see text]) for [Formula: see text], and then the continuum limit [Formula: see text], both exist in the sense of subsequences. They give the model normalized free energies [Formula: see text]. The finiteness of [Formula: see text] is the only question addressed here! The use of the Weyl integration formula is essential in showing these bounds. It allows us to replace the gauge integral over [Formula: see text] gauge bond matrix elements by the integration over its [Formula: see text] eigenvalues. A new global upper bound on the Wilson plaquette action is obtained, which is quadratic in the gluon fields. Our method bypasses the use of diamagnetic inequality and can be extended to treat more general lattices and Lie gauge groups.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x23500046","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We prove thermodynamic and ultraviolet stable stability bounds for lattice scalar QCD quantum models, with multiflavor real or complex scalar Bose matter fields and a compact, connected gauge Lie group [Formula: see text], [Formula: see text] with Lie algebra dimension [Formula: see text]. Our models are defined on a finite hypercubic lattice [Formula: see text], [Formula: see text], [Formula: see text], with [Formula: see text], even, sites on a side, [Formula: see text] sites, and with free boundary conditions. The models action is a sum of a minimally coupled Bose-gauge part and a Wilson pure-gauge plaquette action. We use local, scaled scalar multiflavor Bose fields. The scaling is global, [Formula: see text]-dependent and noncanonical, and corresponds to an a priori renormalization. The Wilson action is a sum over positive plaquette actions times a factor [Formula: see text], with the gauge coupling [Formula: see text] in [Formula: see text], [Formula: see text]. By local gauge invariance, to eliminate the excess of gauge variables, sometimes we use an enhanced temporal gauge, leaving only [Formula: see text] for [Formula: see text], retained bonds. Fixing this gauge does not alter the value of the partition function. Considering the original physical, unscaled partition function [Formula: see text], where [Formula: see text] is the unscaled (bare) hopping parameter and [Formula: see text] are the boson fields bare masses, and letting [Formula: see text] and [Formula: see text], we show that the scaled partition function [Formula: see text] satisfies the thermodynamic and ultraviolet stable stability bounds [Formula: see text], with finite constants [Formula: see text], independent of the lattice size [Formula: see text] of [Formula: see text] and the spacing [Formula: see text]. For the normalized finite-lattice free energy [Formula: see text], a finite thermodynamic limit ([Formula: see text]) for [Formula: see text], and then the continuum limit [Formula: see text], both exist in the sense of subsequences. They give the model normalized free energies [Formula: see text]. The finiteness of [Formula: see text] is the only question addressed here! The use of the Weyl integration formula is essential in showing these bounds. It allows us to replace the gauge integral over [Formula: see text] gauge bond matrix elements by the integration over its [Formula: see text] eigenvalues. A new global upper bound on the Wilson plaquette action is obtained, which is quadratic in the gluon fields. Our method bypasses the use of diamagnetic inequality and can be extended to treat more general lattices and Lie gauge groups.
欧几里得维d = 2,3,4的玻色子晶格QCD模型的热力学和紫外稳定性界
我们证明了晶格标量QCD量子模型的热力学和紫外稳定边界,该模型具有多重实或复标量玻色物质场和紧致、连通规范李群[公式:见文],具有李代数维数[公式:见文]。我们的模型是在有限超立方晶格上定义的[公式:见文],[公式:见文],[公式:见文],有[公式:见文],偶数,在一边的点,[公式:见文]点,并具有自由边界条件。模型的作用是最小耦合玻色规部分和威尔逊纯规斑块作用的总和。我们使用局部,缩放标量多味玻色场。缩放是全局的,[公式:见文本]-依赖和非规范的,并且对应于先验的重整化。Wilson作用是阳性血小板作用乘以一个因子的总和[公式:见文],在[公式:见文],[公式:见文]中,测量耦合[公式:见文]。通过局部规范不变性,为了消除规范变量的过剩,有时我们使用增强的时间规范,仅为[公式:见文本]留下[公式:见文本]保留键。固定这个量规不会改变配分函数的值。考虑原始物理的无标度配分函数[公式:见文],其中[公式:见文]为无标度(裸)跳跃参数,[公式:见文]为玻色子场裸质量,令[公式:见文]和[公式:见文],我们证明了标度配分函数[公式:见文]满足热力学和紫外稳定边界[公式:见文],具有有限常数[公式:见文]:[公式:见文],独立于[公式:见文]的格子大小[公式:见文]和间距[公式:见文]。对于归一化有限晶格自由能[公式:见文],对于[公式:见文]的有限热力学极限([公式:见文]),然后是连续体极限[公式:见文],两者都存在于子序列的意义上。他们给出了归一化的自由能模型[公式:见原文]。[公式:见文本]的有限性是这里要解决的唯一问题!使用Weyl积分公式对于显示这些边界是必要的。它允许我们用它的[公式:见文本]特征值的积分来代替[公式:见文本]规范键矩阵元素的规范积分。得到了威尔森斑块作用的一个新的全局上界,它在胶子场中是二次的。我们的方法绕过了抗磁不等式的使用,可以推广到处理更一般的格和李规群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信