An efficient LSTM based cross domain aspect based sentiment analysis (CD-ABSA)

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Irfan Ali Kandhro, A. Wagan, K. Kumar, Zubair Uddin Shaikh
{"title":"An efficient LSTM based cross domain aspect based sentiment analysis (CD-ABSA)","authors":"Irfan Ali Kandhro, A. Wagan, K. Kumar, Zubair Uddin Shaikh","doi":"10.22581/muet1982.2303.10","DOIUrl":null,"url":null,"abstract":"This research study focuses the cross-domain aspect-based sentiment analysis (CD-ABSA) for existing source domain annotation data. The CD-ABSA tries to use the valuable information in a source domain to extract aspect terms and evaluate their sentiment polarities in a target domain. It can considerably increase the usage of the source domain annotation resources while also reducing the workload of newer domain data annotation. one of the main components of the CD-ABSA is aspect extraction. In this paper, we utilized the most common topic modelling techniques: LDA and LSA to extract aspects from the reviews as it does not require labelled data. The topics are extracted from the education domain of the Course and Teacher Performance Evaluation (CTPE) dataset. In this paper, we also evaluated the different hyper-parameters on the CD-ABSA model and selected the best and optimal combination. The proposed methodology train on domain-dependent and independent word embedding that achieves CD-ABSA, in particularly end-to-end fashion. The experiment carries out on Academica dataset, which consists of students’ comments/feedback and SemEval-2014 dataset, which includes laptops and restaurants reviews. The evaluation metrics such as (precision, recall, F1 score and validation Accuracy) is considered while judging the LSTM classifier performance for CD-ABSA as a result.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2303.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research study focuses the cross-domain aspect-based sentiment analysis (CD-ABSA) for existing source domain annotation data. The CD-ABSA tries to use the valuable information in a source domain to extract aspect terms and evaluate their sentiment polarities in a target domain. It can considerably increase the usage of the source domain annotation resources while also reducing the workload of newer domain data annotation. one of the main components of the CD-ABSA is aspect extraction. In this paper, we utilized the most common topic modelling techniques: LDA and LSA to extract aspects from the reviews as it does not require labelled data. The topics are extracted from the education domain of the Course and Teacher Performance Evaluation (CTPE) dataset. In this paper, we also evaluated the different hyper-parameters on the CD-ABSA model and selected the best and optimal combination. The proposed methodology train on domain-dependent and independent word embedding that achieves CD-ABSA, in particularly end-to-end fashion. The experiment carries out on Academica dataset, which consists of students’ comments/feedback and SemEval-2014 dataset, which includes laptops and restaurants reviews. The evaluation metrics such as (precision, recall, F1 score and validation Accuracy) is considered while judging the LSTM classifier performance for CD-ABSA as a result.
基于高效LSTM的跨领域面向方面情感分析(CD-ABSA)
本研究主要针对已有的源领域标注数据进行基于方面的跨领域情感分析(CD-ABSA)。CD-ABSA试图利用源域中有价值的信息提取方面项,并评估它们在目标域中的情感极性。它可以大大增加源域注释资源的使用,同时还可以减少新域数据注释的工作量。方面提取是CD-ABSA的主要组成部分之一。在本文中,我们使用了最常见的主题建模技术:LDA和LSA来从评论中提取方面,因为它不需要标记数据。主题是从课程和教师绩效评估(CTPE)数据集的教育领域中提取的。本文还在CD-ABSA模型上对不同的超参数进行了评价,并选择了最佳和最优组合。所提出的方法训练了领域相关和独立的词嵌入,以实现CD-ABSA,特别是端到端方式。实验在Academica数据集(包括学生的评论/反馈)和SemEval-2014数据集(包括笔记本电脑和餐馆评论)上进行。在判断CD-ABSA的LSTM分类器性能时,考虑了精度、召回率、F1分数和验证精度等评价指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
76
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信