Compactness and hypercyclicity of co-analytic Toeplitz operators on de Branges-Rovnyak spaces

IF 0.3 Q4 MATHEMATICS
Rim Alhajj
{"title":"Compactness and hypercyclicity of co-analytic Toeplitz operators on de Branges-Rovnyak spaces","authors":"Rim Alhajj","doi":"10.1515/conop-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract We study the compactness and the hypercyclicity of Toeplitz operators Tϕ¯,b {T_{\\bar \\varphi ,b}} with co-analytic and bounded symbols on de Branges-Rovnyak spaces ℋ(b). For the compactness of Tϕ¯,b {T_{\\bar \\varphi ,b}} , we will see that the result depends on the boundary spectrum of b. We will prove that there are non trivial compact operators of the form Tϕ¯,b {T_{\\bar \\varphi ,b}} , with ϕ ∈ H∞ ∩ C(𝕋), if and only if m(σ(b) ∩ 𝕋) = 0. We will also show that, when b is non-extreme, then Tϕ¯,b {T_{\\bar \\varphi ,b}} is hypercyclic if and only if ϕ is non-constant and ϕ(𝔻) ∩ 𝕋 ≠ ∅.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"7 1","pages":"55 - 68"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study the compactness and the hypercyclicity of Toeplitz operators Tϕ¯,b {T_{\bar \varphi ,b}} with co-analytic and bounded symbols on de Branges-Rovnyak spaces ℋ(b). For the compactness of Tϕ¯,b {T_{\bar \varphi ,b}} , we will see that the result depends on the boundary spectrum of b. We will prove that there are non trivial compact operators of the form Tϕ¯,b {T_{\bar \varphi ,b}} , with ϕ ∈ H∞ ∩ C(𝕋), if and only if m(σ(b) ∩ 𝕋) = 0. We will also show that, when b is non-extreme, then Tϕ¯,b {T_{\bar \varphi ,b}} is hypercyclic if and only if ϕ is non-constant and ϕ(𝔻) ∩ 𝕋 ≠ ∅.
de Branges-Rovnyak空间上共解析Toeplitz算子的紧性和超环性
摘要我们研究了de Branges-Rovnyak空间上具有共解析和有界符号的Toeplitz算子T?,b{T_{\bar\varphi,b}}的紧性和超循环性ℋ(b) 。对于T的紧致性,b{T_{\bar\varphi,b}},我们将看到结果取决于b的边界谱(𝕋), 当且仅当m(σ𝕋) = 0。我们还将证明,当b是非极值时,则T?,b{T_{\bar\varphi,b}}是超循环的当且仅当(𝔻) ∩ 𝕋 ≠ ∅.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信