{"title":"Comparison of Moran's I and Geary's c in Multivariate Spatial Pattern Analysis","authors":"Jie Lin","doi":"10.1111/gean.12355","DOIUrl":null,"url":null,"abstract":"<p>This article compares multivariate spatial analysis methods that include not only multivariate covariance, but also spatial dependence of the data explicitly and simultaneously in model design by extending two univariate autocorrelation measures, namely Moran's <i>I</i> and Geary's <i>c</i>. The results derived from the simulation datasets indicate that the standard Moran component analysis is preferable to Geary component analysis as a tool for summarizing multivariate spatial structures. However, the generalized Geary principal component analysis developed in this study by adding variance into the optimization criterion and solved as a trace ratio optimization problem performs as well as, if not better than its counterpart the Moran principal component analysis does. With respect to the sensitivity in detecting subtle spatial structures, the choice of the appropriate tool is dependent on the correlation and variance of the spatial multivariate data. Finally, the four techniques are applied to the Social Determinants of Health dataset to analyze its multivariate spatial pattern. The two generalized methods detect more urban areas and higher autocorrelation structures than the other two standard methods, and provide more obvious contrast between urban and rural areas due to the large variance of the spatial component.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 4","pages":"685-702"},"PeriodicalIF":3.3000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12355","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
This article compares multivariate spatial analysis methods that include not only multivariate covariance, but also spatial dependence of the data explicitly and simultaneously in model design by extending two univariate autocorrelation measures, namely Moran's I and Geary's c. The results derived from the simulation datasets indicate that the standard Moran component analysis is preferable to Geary component analysis as a tool for summarizing multivariate spatial structures. However, the generalized Geary principal component analysis developed in this study by adding variance into the optimization criterion and solved as a trace ratio optimization problem performs as well as, if not better than its counterpart the Moran principal component analysis does. With respect to the sensitivity in detecting subtle spatial structures, the choice of the appropriate tool is dependent on the correlation and variance of the spatial multivariate data. Finally, the four techniques are applied to the Social Determinants of Health dataset to analyze its multivariate spatial pattern. The two generalized methods detect more urban areas and higher autocorrelation structures than the other two standard methods, and provide more obvious contrast between urban and rural areas due to the large variance of the spatial component.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.