Effect of Fiber Orientation and Residual Stresses on the Structural Performance of Injection Molded Short-Fiber-Reinforced Components

Q3 Engineering
G. Ramorino, S. Cecchel, G. Cornacchia
{"title":"Effect of Fiber Orientation and Residual Stresses on the Structural Performance of Injection Molded Short-Fiber-Reinforced Components","authors":"G. Ramorino, S. Cecchel, G. Cornacchia","doi":"10.25728/ASSA.2020.20.2.782","DOIUrl":null,"url":null,"abstract":"To optimize the strength design of short-fiber injection molding components, a three-dimensional flow and structural analysis simulations were employed. In particular, these Finite Element Analyses (FEA) were based on orthotropic, linear and elastic models including process-induced residual stresses. Through an appropriate interface, the results of injection molding analysis of 35 wt.% fiber reinforced polyphthalamides (PPA) manifold block used in hot-water fluid engineering application are transferred to the structural analysis software. In particular, Autodesk Moldlfow software was used to predict the fiber orientation and the in-cavity residual stresses considering the flow kinetics and moulding parameters. The Abaqus interface for Moldflow was used to translate this data into a form that can be used for the structural analysis. Experimental tests were carried out on the injection moulded component in order to evaluate the internal burst pressure values. The burst strength of the component was then compared with those predicted by the numerical analysis. The computations are found in good agreement with the experimental results.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.2.782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

To optimize the strength design of short-fiber injection molding components, a three-dimensional flow and structural analysis simulations were employed. In particular, these Finite Element Analyses (FEA) were based on orthotropic, linear and elastic models including process-induced residual stresses. Through an appropriate interface, the results of injection molding analysis of 35 wt.% fiber reinforced polyphthalamides (PPA) manifold block used in hot-water fluid engineering application are transferred to the structural analysis software. In particular, Autodesk Moldlfow software was used to predict the fiber orientation and the in-cavity residual stresses considering the flow kinetics and moulding parameters. The Abaqus interface for Moldflow was used to translate this data into a form that can be used for the structural analysis. Experimental tests were carried out on the injection moulded component in order to evaluate the internal burst pressure values. The burst strength of the component was then compared with those predicted by the numerical analysis. The computations are found in good agreement with the experimental results.
纤维取向和残余应力对注塑短纤维增强构件结构性能的影响
为了优化短纤维注射成型零件的强度设计,采用三维流动和结构分析模拟方法。特别是,这些有限元分析(FEA)是基于正交各向异性,线性和弹性模型,包括过程引起的残余应力。通过适当的界面,将热水流体工程应用中35wt .%纤维增强聚苯二胺(PPA)歧管块的注塑分析结果传递到结构分析软件中。特别是利用Autodesk moldlflow软件,考虑流动动力学和成型参数,预测纤维取向和腔内残余应力。使用Moldflow的Abaqus接口将这些数据转换为可用于结构分析的形式。对注塑件进行了试验测试,以评估内部破裂压力值。然后将构件的破裂强度与数值分析预测的结果进行了比较。计算结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信