Using skeleton model to recognize human gait gender

Q2 Decision Sciences
O. Alsaif, S. Hasan, A. H. Maray
{"title":"Using skeleton model to recognize human gait gender","authors":"O. Alsaif, S. Hasan, A. H. Maray","doi":"10.11591/ijai.v12.i2.pp974-983","DOIUrl":null,"url":null,"abstract":"Biometrics became fairly important to help people identifications persons by their individualities or features. In this paper, gait recognition has been based on a skeleton model as an important indicator in prevalent activities. Using the reliable dataset for the Chinese Academy of Sciences (CASIA) of silhouettes class C database. Each video has been discredited to 75 frames for each (20 persons (10 males and 10 females)) as (1.0), the result will be 1,500 frames. After Pre-processing the images, many features are extracted from human silhouette images. For gender classification, the human walking skeleton used in this study. The model proposed is based on morphological processes on the silhouette images. The common angle has been computed for the two legs. Later, principal components analysis (PCA) was applied to reduce data using feature selection technology to get the most useful information in gait analysis. Applying two classifiers artificial neural network (ANN) and Gaussian Bayes to distinguish male or female for each classifier. The experimental results for the suggested method provided significant accomplishing about (95.5%), and accuracy of (75%). Gender classification using ANN is more efficient from the Gaussian Bayes technique by (20%), where ANN technique has given a superior performance in recognition.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i2.pp974-983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

Biometrics became fairly important to help people identifications persons by their individualities or features. In this paper, gait recognition has been based on a skeleton model as an important indicator in prevalent activities. Using the reliable dataset for the Chinese Academy of Sciences (CASIA) of silhouettes class C database. Each video has been discredited to 75 frames for each (20 persons (10 males and 10 females)) as (1.0), the result will be 1,500 frames. After Pre-processing the images, many features are extracted from human silhouette images. For gender classification, the human walking skeleton used in this study. The model proposed is based on morphological processes on the silhouette images. The common angle has been computed for the two legs. Later, principal components analysis (PCA) was applied to reduce data using feature selection technology to get the most useful information in gait analysis. Applying two classifiers artificial neural network (ANN) and Gaussian Bayes to distinguish male or female for each classifier. The experimental results for the suggested method provided significant accomplishing about (95.5%), and accuracy of (75%). Gender classification using ANN is more efficient from the Gaussian Bayes technique by (20%), where ANN technique has given a superior performance in recognition.
利用骨骼模型识别人类步态性别
生物识别技术在帮助人们通过个人或特征识别人方面变得相当重要。在本文中,步态识别是基于骨骼模型的,它是普遍活动中的一个重要指标。使用中国科学院(CASIA)的可靠数据集的轮廓C类数据库。每个视频(20人(10男10女))被怀疑为(1.0),结果将是1500帧。在对图像进行预处理后,从人体轮廓图像中提取出许多特征。为了进行性别分类,本研究中使用了人类行走骨架。所提出的模型是基于对轮廓图像的形态学处理。已经计算出两条腿的共同角度。随后,主成分分析(PCA)被应用于使用特征选择技术来减少数据,以获得步态分析中最有用的信息。应用人工神经网络和高斯贝叶斯两个分类器对每个分类器进行区分。实验结果表明,该方法具有较好的完成率(95.5%),准确率(75%)。使用人工神经网络进行性别分类的效率比高斯贝叶斯技术高出(20%),其中人工神经网络技术在识别方面具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信