Ikram Najihi, C. Ennawaoui, A. Hajjaji, Y. Boughaleb
{"title":"Theoretical modeling of longitudinal piezoelectric characteristic for cellular polymers","authors":"Ikram Najihi, C. Ennawaoui, A. Hajjaji, Y. Boughaleb","doi":"10.1177/02624893211055830","DOIUrl":null,"url":null,"abstract":"Efficient energy harvesting is a difficult challenge that consists in the development of systems allowing charging autonomous and low-power devices. In addition to traditional piezoelectric polymers, mono-crystals, and ceramics, cellular electrets offer consistent solutions by converting wasted vibration energy from the environment to usable electrical energy. This paper presents an electromechanical model to study the energy harvesting capability of cellular polymers. The theoretical study models the response of these materials to investigate the effect of different parameters on the piezoelectric coefficient d33, particularly. The model considers the percentage of porosity, surface charge density in each polymer–gas surface, the properties of the polymer matrix and the gas encapsulated in the pores, and the Young’s modulus of the porous film. For poly(ethylene-co-vinyl acetate), the results showed that the piezoelectric performance of the film declines with the increase of the film thickness. However, the variation of the d33 as a function of the percentage of porosity is exponential and can achieve 4.24 pC/N for a porosity of 80%. Compared to a previously published experiment, the theoretical results have proven a good agreement with only 3.3% error.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211055830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5
Abstract
Efficient energy harvesting is a difficult challenge that consists in the development of systems allowing charging autonomous and low-power devices. In addition to traditional piezoelectric polymers, mono-crystals, and ceramics, cellular electrets offer consistent solutions by converting wasted vibration energy from the environment to usable electrical energy. This paper presents an electromechanical model to study the energy harvesting capability of cellular polymers. The theoretical study models the response of these materials to investigate the effect of different parameters on the piezoelectric coefficient d33, particularly. The model considers the percentage of porosity, surface charge density in each polymer–gas surface, the properties of the polymer matrix and the gas encapsulated in the pores, and the Young’s modulus of the porous film. For poly(ethylene-co-vinyl acetate), the results showed that the piezoelectric performance of the film declines with the increase of the film thickness. However, the variation of the d33 as a function of the percentage of porosity is exponential and can achieve 4.24 pC/N for a porosity of 80%. Compared to a previously published experiment, the theoretical results have proven a good agreement with only 3.3% error.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.