Multipliers in weighted Sobolev spaces on the axis

IF 0.7 Q2 MATHEMATICS
A. Myrzagaliyeva
{"title":"Multipliers in weighted Sobolev spaces on the axis","authors":"A. Myrzagaliyeva","doi":"10.31489/2022m3/105-115","DOIUrl":null,"url":null,"abstract":"This work establishes necessary and sufficient conditions for the boundedness of one variable differential operator acting from a weighted Sobolev space W^l_p,v to a weighted Lebesgue space on the positive real half line. The coefficients of differential operators are often assumed to be pointwise multipliers of function spaces. The author introduces pointwise multipliers in weighted Sobolev spaces; obtains the description of the space of multipliers M(W_1 → W_2) for a pair of weighted Sobolev spaces (W_1, W_2) with weights of general type.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m3/105-115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work establishes necessary and sufficient conditions for the boundedness of one variable differential operator acting from a weighted Sobolev space W^l_p,v to a weighted Lebesgue space on the positive real half line. The coefficients of differential operators are often assumed to be pointwise multipliers of function spaces. The author introduces pointwise multipliers in weighted Sobolev spaces; obtains the description of the space of multipliers M(W_1 → W_2) for a pair of weighted Sobolev spaces (W_1, W_2) with weights of general type.
轴上加权Sobolev空间的乘数
本文建立了一元微分算子在正实半直线上从加权Sobolev空间W^l_p,v作用到加权Lebesgue空间的有界性的充分必要条件。微分算子的系数通常被假定为函数空间的点向乘子。引入了加权Sobolev空间中的点乘子;得到了权值为一般型的一对加权Sobolev空间(W_1, W_2)的乘子空间M(W_1→W_2)的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信