{"title":"Alternating sign and sign-restricted matrices: representations and partial orders","authors":"R. Brualdi, G. Dahl","doi":"10.13001/ela.2021.6513","DOIUrl":null,"url":null,"abstract":"Sign-restricted matrices (SRMs) are $(0, \\pm 1)$-matrices where, ignoring 0's, the signs in each column alternate beginning with a $+1$ and all partial row sums are nonnegative. The most investigated of these matrices are the alternating sign matrices (ASMs), where the rows also have the alternating sign property, and all row and column sums equal 1. We introduce monotone triangles to represent SRMs and investigate some of their properties and connections to certain polytopes. We also investigate two partial orders for ASMs related to their patterns alternating cycles and show a number of combinatorial properties of these orders.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.6513","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Sign-restricted matrices (SRMs) are $(0, \pm 1)$-matrices where, ignoring 0's, the signs in each column alternate beginning with a $+1$ and all partial row sums are nonnegative. The most investigated of these matrices are the alternating sign matrices (ASMs), where the rows also have the alternating sign property, and all row and column sums equal 1. We introduce monotone triangles to represent SRMs and investigate some of their properties and connections to certain polytopes. We also investigate two partial orders for ASMs related to their patterns alternating cycles and show a number of combinatorial properties of these orders.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.