Hybrid Feature Selection Method for Intrusion Detection Systems Based on an Improved Intelligent Water Drop Algorithm

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Esraa Alhenawi, Hadeel Alazzam, R. Al-Sayyed, Orieb Abualghanam, Omar Y. Adwan
{"title":"Hybrid Feature Selection Method for Intrusion Detection Systems Based on an Improved Intelligent Water Drop Algorithm","authors":"Esraa Alhenawi, Hadeel Alazzam, R. Al-Sayyed, Orieb Abualghanam, Omar Y. Adwan","doi":"10.2478/cait-2022-0040","DOIUrl":null,"url":null,"abstract":"Abstract A critical task and a competitive research area is to secure networks against attacks. One of the most popular security solutions is Intrusion Detection Systems (IDS). Machine learning has been recently used by researchers to develop high performance IDS. One of the main challenges in developing intelligent IDS is Feature Selection (FS). In this manuscript, a hybrid FS for the IDS network is proposed based on an ensemble filter, and an improved Intelligent Water Drop (IWD) wrapper. The Improved version from IWD algorithm uses local search algorithm as an extra operator to increase the exploiting capability of the basic IWD algorithm. Experimental results on three benchmark datasets “UNSW-NB15”, “NLS-KDD”, and “KDDCUPP99” demonstrate the effectiveness of the proposed model for IDS versus some of the most recent IDS algorithms existing in the literature depending on “F-score”, “accuracy”, “FPR”, “TPR” and “the number of selected features” metrics.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract A critical task and a competitive research area is to secure networks against attacks. One of the most popular security solutions is Intrusion Detection Systems (IDS). Machine learning has been recently used by researchers to develop high performance IDS. One of the main challenges in developing intelligent IDS is Feature Selection (FS). In this manuscript, a hybrid FS for the IDS network is proposed based on an ensemble filter, and an improved Intelligent Water Drop (IWD) wrapper. The Improved version from IWD algorithm uses local search algorithm as an extra operator to increase the exploiting capability of the basic IWD algorithm. Experimental results on three benchmark datasets “UNSW-NB15”, “NLS-KDD”, and “KDDCUPP99” demonstrate the effectiveness of the proposed model for IDS versus some of the most recent IDS algorithms existing in the literature depending on “F-score”, “accuracy”, “FPR”, “TPR” and “the number of selected features” metrics.
基于改进智能水滴算法的入侵检测系统混合特征选择方法
摘要保护网络免受攻击是一项关键任务,也是一个具有竞争力的研究领域。最流行的安全解决方案之一是入侵检测系统(IDS)。机器学习最近被研究人员用于开发高性能IDS。开发智能IDS的主要挑战之一是特征选择(FS)。在本文中,基于集成滤波器和改进的智能水滴(IWD)包装器,提出了一种用于IDS网络的混合FS。改进后的IWD算法使用局部搜索算法作为额外的算子,提高了基本IWD算法的利用能力。在三个基准数据集“UNSW-NB15”、“NLS-KDD”和“KDDCUPP99”上的实验结果证明了所提出的IDS模型相对于文献中存在的一些最新IDS算法的有效性,这些算法取决于“F分数”、“准确性”、“FPR”、“TPR”和“所选特征的数量”度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信