Estimation of evaporation and transpiration rates under varying water availability for improving crop management of soybeans using oxygen isotope ratios of pore water
G. Liebhard, A. Klik, C. Stumpp, A. M. Morales Santos, J. Eitzinger, R. Nolz
{"title":"Estimation of evaporation and transpiration rates under varying water availability for improving crop management of soybeans using oxygen isotope ratios of pore water","authors":"G. Liebhard, A. Klik, C. Stumpp, A. M. Morales Santos, J. Eitzinger, R. Nolz","doi":"10.31545/intagr/150811","DOIUrl":null,"url":null,"abstract":". Knowledge of crop water requirements and the effects of management practices on the amounts of water used for crop transpiration and that lost through soil evaporation is essential for efficient agricultural water management. Therefore, this study investigated the temporal evolution of weekly evaporation and transpiration rates under varying soil water conditions in a conventionally managed soybean field by partitioning evap otranspiration based on a water and δ 18 O-stable isotope mass balance. The estimated rates were considered in combination with vertical soil water distribution, atmospheric demand (based on crop evapotranspiration), actual evapotranspiration, and the plant development stage. This allowed for the weekly rates to be compared to the current conditions resulting from dry periods, rain or irrigation events, and the extent of the canopy. The range of weekly transpiration/evapotranspiration, from blossom to maturation, was between 0.60 (±0.11) and 0.82 (±0.10). Within this range, transpiration/evapotranspiration shifted depending on the vertical soil water distribution and meteorological conditions. During dry soil surface periods, evaporation dropped to almost zero, whereas a wet surface layer substantially increased evaporation/evapotran-spiration, even under a closed canopy. Under given conditions, the application of a few intense irrigations before the drying of the soil surface is recommended.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/150811","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
. Knowledge of crop water requirements and the effects of management practices on the amounts of water used for crop transpiration and that lost through soil evaporation is essential for efficient agricultural water management. Therefore, this study investigated the temporal evolution of weekly evaporation and transpiration rates under varying soil water conditions in a conventionally managed soybean field by partitioning evap otranspiration based on a water and δ 18 O-stable isotope mass balance. The estimated rates were considered in combination with vertical soil water distribution, atmospheric demand (based on crop evapotranspiration), actual evapotranspiration, and the plant development stage. This allowed for the weekly rates to be compared to the current conditions resulting from dry periods, rain or irrigation events, and the extent of the canopy. The range of weekly transpiration/evapotranspiration, from blossom to maturation, was between 0.60 (±0.11) and 0.82 (±0.10). Within this range, transpiration/evapotranspiration shifted depending on the vertical soil water distribution and meteorological conditions. During dry soil surface periods, evaporation dropped to almost zero, whereas a wet surface layer substantially increased evaporation/evapotran-spiration, even under a closed canopy. Under given conditions, the application of a few intense irrigations before the drying of the soil surface is recommended.
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.