Property investigation for high-Performance Polyimides fabricated via compression molding in solid-like state

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Changxin Wan, D. Jia, S. Zhan, Wu Zhang, Tian Yang, Yinhua Li, Jian Li, H. Duan
{"title":"Property investigation for high-Performance Polyimides fabricated via compression molding in solid-like state","authors":"Changxin Wan, D. Jia, S. Zhan, Wu Zhang, Tian Yang, Yinhua Li, Jian Li, H. Duan","doi":"10.1177/09540083221148392","DOIUrl":null,"url":null,"abstract":"A compacted body was fabricated by pulverulent polyimide (PI) block copolymers using solid-like state compression molding (SCM) technique. Polymer heated to solid-like state, i.e. the high-elastic non-melting state above the glass transition temperature (Tg) and well below melting temperature, could achieve plasticity due to dramatic decreases in elastic modulus. Tensile properties were taken as response values, and the results of single-factor experiments indicated that molding temperature was the dominant parameter on mechanical performances, followed by molding pressure and holding time. Within this context, the SCM process possesses a longer processing time window whereas the processing temperature is narrow. The manufacturing defects induced by inappropriate processing conditions also hurt the tribological performance of PIs. Particles in a solid-like state could coalesce tightly only by exerting both high temperature and pressure in the SCM process. Thermoforming mechanism examined by atomic-scale molecular dynamics simulation indicated that non-bonding interaction forces, especially van der Waals forces play a key role in fusing among polymeric particles. This study is devoted to establishing the interdependence of structure-formability-property for high-temperature polymers that are not melt processible.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"35 1","pages":"508 - 518"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083221148392","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 2

Abstract

A compacted body was fabricated by pulverulent polyimide (PI) block copolymers using solid-like state compression molding (SCM) technique. Polymer heated to solid-like state, i.e. the high-elastic non-melting state above the glass transition temperature (Tg) and well below melting temperature, could achieve plasticity due to dramatic decreases in elastic modulus. Tensile properties were taken as response values, and the results of single-factor experiments indicated that molding temperature was the dominant parameter on mechanical performances, followed by molding pressure and holding time. Within this context, the SCM process possesses a longer processing time window whereas the processing temperature is narrow. The manufacturing defects induced by inappropriate processing conditions also hurt the tribological performance of PIs. Particles in a solid-like state could coalesce tightly only by exerting both high temperature and pressure in the SCM process. Thermoforming mechanism examined by atomic-scale molecular dynamics simulation indicated that non-bonding interaction forces, especially van der Waals forces play a key role in fusing among polymeric particles. This study is devoted to establishing the interdependence of structure-formability-property for high-temperature polymers that are not melt processible.
固态压缩成型制备高性能聚酰亚胺的性能研究
以聚酰亚胺(PI)嵌段共聚物为原料,采用固态压缩成型(SCM)技术制备了压实体。聚合物加热到类固体状态,即高于玻璃化转变温度(Tg)而远低于熔融温度的高弹性非熔融状态,由于弹性模量急剧下降,可以实现塑性。以拉伸性能作为响应值,单因素实验结果表明,成型温度是影响力学性能的主要参数,其次是成型压力和保温时间。在这种情况下,SCM过程具有较长的处理时间窗口,而处理温度较窄。不适当的加工条件所导致的制造缺陷也影响了pi的摩擦学性能。在SCM过程中,只有同时施加高温和高压才能使类固体状态的颗粒紧密结合。原子尺度的分子动力学模拟表明,非键相互作用力,特别是范德华力在聚合物颗粒间的熔合过程中起着关键作用。本研究致力于建立不可熔体加工的高温聚合物的结构-成形性-性能之间的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Performance Polymers
High Performance Polymers 化学-高分子科学
CiteScore
4.20
自引率
14.30%
发文量
106
审稿时长
1.2 months
期刊介绍: Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信