{"title":"Complete Monotonicity Properties of a Function Involving the Polygamma Function","authors":"K. Nantomah","doi":"10.30538/PSRP-EASL2018.0002","DOIUrl":null,"url":null,"abstract":"In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\\psi^{(k)}(x+a) - \\psi^{(k)}(x) - \\frac{ak!}{x^{k+1}}$, where $a\\in(0,1)$ and $k\\in \\mathbb{N}_0$. Specifically, we consider the cases for $k\\in \\{ 2n: n\\in \\mathbb{N}_0 \\}$ and $k\\in \\{ 2n+1: n\\in \\mathbb{N}_0 \\}$. Subsequently, we deduce some inequalities involving the polygamma functions.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-EASL2018.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\psi^{(k)}(x+a) - \psi^{(k)}(x) - \frac{ak!}{x^{k+1}}$, where $a\in(0,1)$ and $k\in \mathbb{N}_0$. Specifically, we consider the cases for $k\in \{ 2n: n\in \mathbb{N}_0 \}$ and $k\in \{ 2n+1: n\in \mathbb{N}_0 \}$. Subsequently, we deduce some inequalities involving the polygamma functions.