Michael J. Spear, Petra A. Wakker, Thomas P. Shannon, R. Lowe, L. Burlakova, A. Karatayev, M. J. Vander Zanden
{"title":"Early changes in the benthic community of a eutrophic lake following zebra mussel (Dreissena polymorpha) invasion","authors":"Michael J. Spear, Petra A. Wakker, Thomas P. Shannon, R. Lowe, L. Burlakova, A. Karatayev, M. J. Vander Zanden","doi":"10.1080/20442041.2021.2007744","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the context-dependent world of biological invasions, biologists understand few general patterns of spread and impact. One possible exception is the zebra mussel (Dreissena polymorpha), an invader that routinely restructures food webs through an ecosystem engineering process termed “benthification.” By efficiently consuming phytoplankton, zebra mussels can increase light penetration and nutrient concentrations in the benthos of a lake, thereby stimulating growth of benthic periphyton (phytobenthos) and macroinvertebrates (zoobenthos). Few studies monitor the response of these benthic communities to invasion. We documented early changes in phytobenthos and zoobenthos as zebra mussels invaded eutrophic Lake Mendota (Wisconsin, USA). From 2015 to 2018, the number of zebra mussel individuals reached densities >30 000 m−2 on hard substrates and 3000 m−2 in macrophyte beds. Community data showed classic signs of benthification, including 300% increases in (non-zebra mussel) zoobenthos and phytobenthos abundance on average across a depth gradient, including significant increases at depths where zebra mussels did colonize. Deep macrophyte biomass increased 900%, but water clarity showed no significant rapid increase. We speculate that nutrient enrichment may be more strongly responsible than increased light penetration for the benthic response of Lake Mendota. Continued integration of benthic production and processes into our study of lake ecosystems will be critical to understanding whole ecosystem function, especially as zebra mussels continue to “benthify” lakes within their invaded range.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"311 - 329"},"PeriodicalIF":2.7000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2021.2007744","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
ABSTRACT In the context-dependent world of biological invasions, biologists understand few general patterns of spread and impact. One possible exception is the zebra mussel (Dreissena polymorpha), an invader that routinely restructures food webs through an ecosystem engineering process termed “benthification.” By efficiently consuming phytoplankton, zebra mussels can increase light penetration and nutrient concentrations in the benthos of a lake, thereby stimulating growth of benthic periphyton (phytobenthos) and macroinvertebrates (zoobenthos). Few studies monitor the response of these benthic communities to invasion. We documented early changes in phytobenthos and zoobenthos as zebra mussels invaded eutrophic Lake Mendota (Wisconsin, USA). From 2015 to 2018, the number of zebra mussel individuals reached densities >30 000 m−2 on hard substrates and 3000 m−2 in macrophyte beds. Community data showed classic signs of benthification, including 300% increases in (non-zebra mussel) zoobenthos and phytobenthos abundance on average across a depth gradient, including significant increases at depths where zebra mussels did colonize. Deep macrophyte biomass increased 900%, but water clarity showed no significant rapid increase. We speculate that nutrient enrichment may be more strongly responsible than increased light penetration for the benthic response of Lake Mendota. Continued integration of benthic production and processes into our study of lake ecosystems will be critical to understanding whole ecosystem function, especially as zebra mussels continue to “benthify” lakes within their invaded range.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.