Total biomass of a single population in two-patch environments

IF 1.2 4区 生物学 Q4 ECOLOGY
Daozhou Gao , Yuan Lou
{"title":"Total biomass of a single population in two-patch environments","authors":"Daozhou Gao ,&nbsp;Yuan Lou","doi":"10.1016/j.tpb.2022.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>For the two-patch logistic model, we study the effect of dispersal intensity and dispersal asymmetry on the total population abundance and its distribution. Two complete classifications of the model parameter space are given: one concerning when dispersal causes smaller or larger total biomass than no dispersal, and the other addressing how the total biomass changes with dispersal intensity and dispersal asymmetry. The dependencies of the population abundance of each individual patch on dispersal intensity and dispersal asymmetry are also fully characterized. In addition, the maximal and minimal total population sizes induced by dispersal are determined for the logistic model with an arbitrary number of patches, and a weak order-preserving result correlated the local population abundances with and without dispersal is established.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"146 ","pages":"Pages 1-14"},"PeriodicalIF":1.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000326","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

For the two-patch logistic model, we study the effect of dispersal intensity and dispersal asymmetry on the total population abundance and its distribution. Two complete classifications of the model parameter space are given: one concerning when dispersal causes smaller or larger total biomass than no dispersal, and the other addressing how the total biomass changes with dispersal intensity and dispersal asymmetry. The dependencies of the population abundance of each individual patch on dispersal intensity and dispersal asymmetry are also fully characterized. In addition, the maximal and minimal total population sizes induced by dispersal are determined for the logistic model with an arbitrary number of patches, and a weak order-preserving result correlated the local population abundances with and without dispersal is established.

双斑块环境下单个种群的总生物量
对于双斑块logistic模型,我们研究了分散强度和分散不对称性对种群总体丰度及其分布的影响。给出了两种完整的模型参数空间分类:一种是关于扩散导致总生物量比没有扩散时更小或更大,另一种是关于总生物量如何随扩散强度和扩散不对称性而变化。每个斑块的种群丰度对扩散强度和扩散不对称性的依赖关系也得到了充分的表征。此外,对于具有任意数量斑块的logistic模型,确定了分散引起的最大和最小种群大小,并建立了局部种群丰度与非分散之间的弱序保持结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信