A dynamical Borel–Cantelli lemma via improvements to Dirichlet’s theorem

Q4 Mathematics
D. Kleinbock, Shucheng Yu
{"title":"A dynamical Borel–Cantelli lemma via\nimprovements to Dirichlet’s theorem","authors":"D. Kleinbock, Shucheng Yu","doi":"10.2140/moscow.2020.9.101","DOIUrl":null,"url":null,"abstract":"Let $X\\cong \\operatorname{SL}_2(\\mathbb R)/\\operatorname{SL}_2(\\mathbb Z)$ be the space of unimodular lattices in $\\mathbb R^2$, and for any $r\\ge 0$ denote by $K_r\\subset X$ the set of lattices such that all its nonzero vectors have supremum norm at least $e^{-r}$. These are compact nested subset{s} of $X$, with $K_0 = {\\bigcap}_{r}K_r$ being the union of two closed horocycles. We use an explicit second moment formula for the Siegel transform of the indicator functions of squares in $\\mathbb R^2$ centered at the origin to derive an asymptotic formula for the volume of sets $K_r$ as $r\\to 0$. Combined with a zero-one law for the set of the $\\psi$-Dirichlet numbers established by Kleinbock and Wadleigh, this gives a new dynamical Borel-Cantelli lemma for the geodesic flow on $X$ with respect to the family of shrinking targets $\\{K_r\\}$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2020.9.101","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

Let $X\cong \operatorname{SL}_2(\mathbb R)/\operatorname{SL}_2(\mathbb Z)$ be the space of unimodular lattices in $\mathbb R^2$, and for any $r\ge 0$ denote by $K_r\subset X$ the set of lattices such that all its nonzero vectors have supremum norm at least $e^{-r}$. These are compact nested subset{s} of $X$, with $K_0 = {\bigcap}_{r}K_r$ being the union of two closed horocycles. We use an explicit second moment formula for the Siegel transform of the indicator functions of squares in $\mathbb R^2$ centered at the origin to derive an asymptotic formula for the volume of sets $K_r$ as $r\to 0$. Combined with a zero-one law for the set of the $\psi$-Dirichlet numbers established by Kleinbock and Wadleigh, this gives a new dynamical Borel-Cantelli lemma for the geodesic flow on $X$ with respect to the family of shrinking targets $\{K_r\}$.
一个动态Borel–Cantelli引理及其对Dirichlet定理的改进
让$X\cong\运算符名称{SL}_2(\mathbb R)/\operator名称{SL}_2(\mathbb Z)$是$\mathbb R^2$中的幺模格的空间,并且对于任何$R\ge 0$用$K_R\subset X$表示格的集合,使得其所有非零向量具有至少$e^{-R}$的上确界范数。这些是$X$的紧凑嵌套子集{s},其中$K_0={\bigcap}_{r}K_r$是两个闭合星座的结合。我们使用以原点为中心的$\mathbb R^2$中平方的指示函数的Siegel变换的显式二阶矩公式,导出集合$K_R$的体积为$R\到0$的渐近公式。结合Kleinbok和Wadleigh建立的$\psi$-Dichlet数集的零一定律,给出了$X$上关于收缩目标族$\{K_r}$的测地线流的一个新的动力学Borel-Cantelli引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信