{"title":"Rauzy induction of polygon partitions and toral $ \\mathbb{Z}^2 $-rotations","authors":"S'ebastien Labb'e","doi":"10.3934/jmd.2021017","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathscr{X}_{\\mathscr{P}, R} $\\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathscr{P} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id=\"M6\">\\begin{document}$ R $\\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=\"M7\">\\begin{document}$ R $\\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id=\"M8\">\\begin{document}$ W $\\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mathscr{X}_{\\mathscr{P}, R} $\\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id=\"M10\">\\begin{document}$ 2 $\\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\mathscr{X}_{\\widehat{\\mathscr{P}}|_W, \\widehat{R}|_W} $\\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\widehat{\\mathscr{P}}|_W $\\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\widehat{R}|_W $\\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id=\"M15\">\\begin{document}$ W $\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\mathscr{X}_{\\mathscr{P}_0, R_0} $\\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id=\"M17\">\\begin{document}$ X_0 $\\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id=\"M18\">\\begin{document}$ {\\mathscr{P}}_0 $\\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id=\"M20\">\\begin{document}$ R_0 $\\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id=\"M21\">\\begin{document}$ X_0 $\\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id=\"M22\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id=\"M23\">\\begin{document}$ R_0 $\\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2021017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We extend the notion of Rauzy induction of interval exchange transformations to the case of toral \begin{document}$ \mathbb{Z}^2 $\end{document}-rotation, i.e., \begin{document}$ \mathbb{Z}^2 $\end{document}-action defined by rotations on a 2-torus. If \begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document} denotes the symbolic dynamical system corresponding to a partition \begin{document}$ \mathscr{P} $\end{document} and \begin{document}$ \mathbb{Z}^2 $\end{document}-action \begin{document}$ R $\end{document} such that \begin{document}$ R $\end{document} is Cartesian on a sub-domain \begin{document}$ W $\end{document}, we express the 2-dimensional configurations in \begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document} as the image under a \begin{document}$ 2 $\end{document}-dimensional morphism (up to a shift) of a configuration in \begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document} where \begin{document}$ \widehat{\mathscr{P}}|_W $\end{document} is the induced partition and \begin{document}$ \widehat{R}|_W $\end{document} is the induced \begin{document}$ \mathbb{Z}^2 $\end{document}-action on \begin{document}$ W $\end{document}.
We focus on one example, \begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift \begin{document}$ X_0 $\end{document} of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, \begin{document}$ {\mathscr{P}}_0 $\end{document} is a Markov partition for the associated toral \begin{document}$ \mathbb{Z}^2 $\end{document}-rotation \begin{document}$ R_0 $\end{document}. It also implies that the subshift \begin{document}$ X_0 $\end{document} is uniquely ergodic and is isomorphic to the toral \begin{document}$ \mathbb{Z}^2 $\end{document}-rotation \begin{document}$ R_0 $\end{document} which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.