Rauzy induction of polygon partitions and toral $ \mathbb{Z}^2 $-rotations

IF 0.7 1区 数学 Q2 MATHEMATICS
S'ebastien Labb'e
{"title":"Rauzy induction of polygon partitions and toral $ \\mathbb{Z}^2 $-rotations","authors":"S'ebastien Labb'e","doi":"10.3934/jmd.2021017","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathscr{X}_{\\mathscr{P}, R} $\\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathscr{P} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id=\"M6\">\\begin{document}$ R $\\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=\"M7\">\\begin{document}$ R $\\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id=\"M8\">\\begin{document}$ W $\\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mathscr{X}_{\\mathscr{P}, R} $\\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id=\"M10\">\\begin{document}$ 2 $\\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\mathscr{X}_{\\widehat{\\mathscr{P}}|_W, \\widehat{R}|_W} $\\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\widehat{\\mathscr{P}}|_W $\\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\widehat{R}|_W $\\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id=\"M15\">\\begin{document}$ W $\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\mathscr{X}_{\\mathscr{P}_0, R_0} $\\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id=\"M17\">\\begin{document}$ X_0 $\\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id=\"M18\">\\begin{document}$ {\\mathscr{P}}_0 $\\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id=\"M20\">\\begin{document}$ R_0 $\\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id=\"M21\">\\begin{document}$ X_0 $\\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id=\"M22\">\\begin{document}$ \\mathbb{Z}^2 $\\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id=\"M23\">\\begin{document}$ R_0 $\\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2021017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We extend the notion of Rauzy induction of interval exchange transformations to the case of toral \begin{document}$ \mathbb{Z}^2 $\end{document}-rotation, i.e., \begin{document}$ \mathbb{Z}^2 $\end{document}-action defined by rotations on a 2-torus. If \begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document} denotes the symbolic dynamical system corresponding to a partition \begin{document}$ \mathscr{P} $\end{document} and \begin{document}$ \mathbb{Z}^2 $\end{document}-action \begin{document}$ R $\end{document} such that \begin{document}$ R $\end{document} is Cartesian on a sub-domain \begin{document}$ W $\end{document}, we express the 2-dimensional configurations in \begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document} as the image under a \begin{document}$ 2 $\end{document}-dimensional morphism (up to a shift) of a configuration in \begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document} where \begin{document}$ \widehat{\mathscr{P}}|_W $\end{document} is the induced partition and \begin{document}$ \widehat{R}|_W $\end{document} is the induced \begin{document}$ \mathbb{Z}^2 $\end{document}-action on \begin{document}$ W $\end{document}.

We focus on one example, \begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift \begin{document}$ X_0 $\end{document} of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, \begin{document}$ {\mathscr{P}}_0 $\end{document} is a Markov partition for the associated toral \begin{document}$ \mathbb{Z}^2 $\end{document}-rotation \begin{document}$ R_0 $\end{document}. It also implies that the subshift \begin{document}$ X_0 $\end{document} is uniquely ergodic and is isomorphic to the toral \begin{document}$ \mathbb{Z}^2 $\end{document}-rotation \begin{document}$ R_0 $\end{document} which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.

多边形分割和总$ \mathbb{Z}^2 $-旋转的模糊归纳
我们将区间交换变换的Rauzy诱导的概念推广到了托拉\贝gin{document}$\mathbb{Z}^2$\end的情况{document}-rotation,即\ begin{document}$\mathbb{Z}^2$\ end{document}-action由2-环面上的旋转定义。如果\ begin{document}$\mathscr{X}_{\mathscr{P},R}$\end{document}表示对应于分区\ begin{document}$\mathscr{P}$\end}和\ begin{document}$\mathbb{Z}^2$\end的符号动力系统{document}-action\begin{document}$R$\end{document}使得\begin{document}$R$\end{document}在子域上是笛卡尔的,我们在\bbegin{document}$\mathscr中表达二维配置{X}_{\mathscr{P},R}$\end{document}作为\ begin{document}$2$\end下的图像{document}-dimensional\begin{document}$\mathscr中配置的态射(最多移位){X}_{\widehat{\mathscr{P}}|_W,\wideht{R}|-W}$\end{document}其中\ begin{document}$\ widehat{\mathscr{P}}| _W$\end}是诱导分区,\ begin{document}$\ wideshat{R}|_W$\ end{document}是诱导的\ begin}$\mathbb{Z}^2$\end{document}-action在\开始{文档}$W$\结束{文档}上。我们关注一个例子,\begon{document}$\mathscr{X}_{\mathscr{P}_0,R_0}$\end{document},我们得到了2维态射的最终周期序列。我们证明了它与作者在早期工作中计算的Jeandel–Rao Wang移位的最小子移位\ begin{document}$X_0$\ end{documents}的替代结构相同。因此,\ begin{document}${\mathscr{P}}_0$\end{document}是关联的taral \ begin}$\mathbb{Z}^2$\end的马尔可夫分区{document}-rotation\开始{文档}$R_0$\结束{文档}。它还暗示了子移位\ begin{document}$X_0$\ end{documents}是唯一遍历的,并且同构于toral \ begin{document}$\mathbb{Z}^2$\ end{document}-rotation\begin{document}$R_0$\end{document},它可以看作是Sturmian序列与圆上无理旋转之间关系的二维子移位的推广。电池包括:算法和代码,以复制证明提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信