{"title":"Routing and staffing in emergency departments: A multiclass queueing model with workload dependent service times","authors":"Siddhartha Nambiar, M. Mayorga, Yunan Liu","doi":"10.1080/24725579.2022.2100522","DOIUrl":null,"url":null,"abstract":"Abstract Efficient patient flow through an emergency department is a critical factor that contributes to a hospital’s performance, which influences overall patient health outcomes. In this work, we model a multiclass multiserver queueing system where patients of varying acuity receive care from one of several wards, each ward is attended by several nurses who work as a team. Supported by empirical evidence that a patient’s time-in-ward is a function of the nurse-patient ratio in that ward, we incorporate state-dependent service times into our model. Our objective is to reduce patient time in system and to control nurse workload by jointly optimizing patient routing and nurse allocation decisions. Due to the computational challenges in formulating and solving the queueing model representation, we study a corresponding deterministic fluid model which serves as a first-order approximation of the multiclass queueing model. Next, we formulate and solve an optimization model using the first-order control equations and input the results into a discrete-event simulation to estimate performance measures, such as patient length-of-stay and ward workload. Finally, we present a case study using retrospective data from a real hospital which highlights the importance of accounting for nurse workload and service behavior in developing routing and staffing policies.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"13 1","pages":"46 - 61"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2022.2100522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Efficient patient flow through an emergency department is a critical factor that contributes to a hospital’s performance, which influences overall patient health outcomes. In this work, we model a multiclass multiserver queueing system where patients of varying acuity receive care from one of several wards, each ward is attended by several nurses who work as a team. Supported by empirical evidence that a patient’s time-in-ward is a function of the nurse-patient ratio in that ward, we incorporate state-dependent service times into our model. Our objective is to reduce patient time in system and to control nurse workload by jointly optimizing patient routing and nurse allocation decisions. Due to the computational challenges in formulating and solving the queueing model representation, we study a corresponding deterministic fluid model which serves as a first-order approximation of the multiclass queueing model. Next, we formulate and solve an optimization model using the first-order control equations and input the results into a discrete-event simulation to estimate performance measures, such as patient length-of-stay and ward workload. Finally, we present a case study using retrospective data from a real hospital which highlights the importance of accounting for nurse workload and service behavior in developing routing and staffing policies.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.