Elliptic double shuffle, Grothendieck–Teichmüller and mould theory

IF 0.5 Q3 MATHEMATICS
Leila Schneps
{"title":"Elliptic double shuffle, Grothendieck–Teichmüller and mould theory","authors":"Leila Schneps","doi":"10.1007/s40316-020-00141-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we define an <i>elliptic double shuffle Lie algebra</i> <span>\\(\\scriptstyle {{\\mathfrak {ds}}_{ell}}\\)</span> that generalizes the well-known <i>double shuffle Lie algebra</i> <span>\\(\\scriptstyle {{\\mathfrak {ds}}}\\)</span> to the elliptic situation. The double shuffle, or dimorphic, relations satisfied by elements of the Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {ds}}}\\)</span> express two families of algebraic relations between multiple zeta values that conjecturally generate all relations. In analogy with this, elements of the elliptic double shuffle Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {ds}}_{ell}}\\)</span> are Lie polynomials having a dimorphic property called <span>\\(\\scriptstyle {\\Delta }\\)</span>-bialternality that conjecturally describes the (dual of the) set of algebraic relations between <i>elliptic multiple zeta values</i>, which arise as coefficients of a certain elliptic generating series (constructed explicitly in Lochak et al.\n[15]) in On elliptic multiple zeta values 2016, in preparation) and closely related to the elliptic associator defined by Enriquez\n[10]. We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding the existence of an injective Lie algebra morphism <span>\\(\\scriptstyle {{\\mathfrak {ds}}\\rightarrow {\\mathfrak {ds}}_{ell}}\\)</span>. Our main result is the compatibility of this map with the tangential-base-point section <span>\\(\\scriptstyle {\\mathrm{Lie}\\,\\pi _1(MTM)\\rightarrow \\mathrm{Lie}\\,\\pi _1(MEM)}\\)</span> constructed by Hain and Matsumoto\n[14] and with the section <span>\\(\\scriptstyle {{\\mathfrak {grt}}\\rightarrow {\\mathfrak {grt}}_{ell}}\\)</span> mapping the Grothendieck–Teichmüller Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {grt}}}\\)</span> into the elliptic Grothendieck–Teichmüller Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {grt}}_{ell}}\\)</span> constructed by Enriquez. This compatibility is expressed by the commutativity of the following diagram (excluding the dotted arrow, which is conjectural). </p><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"44 2","pages":"261 - 289"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00141-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00141-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this article we define an elliptic double shuffle Lie algebra \(\scriptstyle {{\mathfrak {ds}}_{ell}}\) that generalizes the well-known double shuffle Lie algebra \(\scriptstyle {{\mathfrak {ds}}}\) to the elliptic situation. The double shuffle, or dimorphic, relations satisfied by elements of the Lie algebra \(\scriptstyle {{\mathfrak {ds}}}\) express two families of algebraic relations between multiple zeta values that conjecturally generate all relations. In analogy with this, elements of the elliptic double shuffle Lie algebra \(\scriptstyle {{\mathfrak {ds}}_{ell}}\) are Lie polynomials having a dimorphic property called \(\scriptstyle {\Delta }\)-bialternality that conjecturally describes the (dual of the) set of algebraic relations between elliptic multiple zeta values, which arise as coefficients of a certain elliptic generating series (constructed explicitly in Lochak et al. [15]) in On elliptic multiple zeta values 2016, in preparation) and closely related to the elliptic associator defined by Enriquez [10]. We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding the existence of an injective Lie algebra morphism \(\scriptstyle {{\mathfrak {ds}}\rightarrow {\mathfrak {ds}}_{ell}}\). Our main result is the compatibility of this map with the tangential-base-point section \(\scriptstyle {\mathrm{Lie}\,\pi _1(MTM)\rightarrow \mathrm{Lie}\,\pi _1(MEM)}\) constructed by Hain and Matsumoto [14] and with the section \(\scriptstyle {{\mathfrak {grt}}\rightarrow {\mathfrak {grt}}_{ell}}\) mapping the Grothendieck–Teichmüller Lie algebra \(\scriptstyle {{\mathfrak {grt}}}\) into the elliptic Grothendieck–Teichmüller Lie algebra \(\scriptstyle {{\mathfrak {grt}}_{ell}}\) constructed by Enriquez. This compatibility is expressed by the commutativity of the following diagram (excluding the dotted arrow, which is conjectural).

Abstract Image

椭圆双洗牌、Grothendieck–Teichmüller与模具理论
在本文中,我们定义了一个椭圆双混洗李代数(\scriptstyle{{\mathfrak{ds}}_{ell}),它将众所周知的双混洗李代数(\sscriptstyle{。李代数(\scriptstyle{{\mathfrak{ds}})的元素所满足的双混洗或二态关系表示多个ζ值之间的两个代数关系族,它们推测地生成所有关系。与此类似,椭圆双混洗李代数\(\scriptstyle{\mathfrak{ds}}_{ell})的元素是李多项式,其具有称为\(\sscriptstyle{\Delta}\)-二择性的二形性质,该性质推测性地描述了椭圆多个ζ值之间的代数关系的(对偶)集,其作为某个椭圆生成级数(在Lochak等人[15]中明确构建)的系数出现在On elliptic multiple zeta values 2016,in preparation)中,并且与Enriquez[10]定义的椭圆结合子密切相关。我们证明了模理论中Ecalle的一个主要结果可以被重新解释为产生内射李代数态射的存在性(\scriptstyle。我们的主要结果是该映射与切向基点截面\(\scriptstyle{\mathrm{Lie}\,\pi _1(MTM)\rightarrow\mathrm{Lie}\,\pi _1(MEM)}\),并利用Enriquez构造的区间\(\scriptstyle{{\mathfrak{grt}}\rightarrow{\math frak{grt}}_{ell})将Grothendieck–Teichmüller李代数\(\sscriptstyle{。这种兼容性用下图的交换性来表示(不包括虚线箭头,这是推测性的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信