Local well-posedness for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces

IF 0.7 3区 数学 Q2 MATHEMATICS
J. An, PyongJo Ryu, Jinmyong Kim
{"title":"Local well-posedness for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces","authors":"J. An, PyongJo Ryu, Jinmyong Kim","doi":"10.4171/zaa/1707","DOIUrl":null,"url":null,"abstract":"In this paper, we study the Cauchy problem for the inhomogeneous biharmonic nonlinear Schr¨odinger (IBNLS) equation where d ∈ N , s ≥ 0, 0 < b < 4, σ > 0 and λ ∈ R . Under some regularity assumption for the nonlinear term, we prove that the IBNLS equation is locally well-posed in H s ( R d ) if d ∈ N , 0 ≤ s < min { 2 + d 2 , 32 d } , 0 < b < min { 4 , d, 32 d − s, d 2 + 2 − s } and 0 < σ < σ c ( s ). Here σ c ( s ) = 8 − 2 b d − 2 s if s < d 2 , and σ c ( s ) = ∞ if s ≥ d 2 . Our local well-posedness result improves the ones of Guzm´an-Pastor [Nonlinear Anal. Real World Appl. 56 (2020) 103174] and Liu-Zhang [J. Differential Equations 296 (2021) 335-368] by extending the validity of s and b . Mathematics Subject Classification (2020) . Primary 35Q55; Secondary 35A01.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/zaa/1707","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we study the Cauchy problem for the inhomogeneous biharmonic nonlinear Schr¨odinger (IBNLS) equation where d ∈ N , s ≥ 0, 0 < b < 4, σ > 0 and λ ∈ R . Under some regularity assumption for the nonlinear term, we prove that the IBNLS equation is locally well-posed in H s ( R d ) if d ∈ N , 0 ≤ s < min { 2 + d 2 , 32 d } , 0 < b < min { 4 , d, 32 d − s, d 2 + 2 − s } and 0 < σ < σ c ( s ). Here σ c ( s ) = 8 − 2 b d − 2 s if s < d 2 , and σ c ( s ) = ∞ if s ≥ d 2 . Our local well-posedness result improves the ones of Guzm´an-Pastor [Nonlinear Anal. Real World Appl. 56 (2020) 103174] and Liu-Zhang [J. Differential Equations 296 (2021) 335-368] by extending the validity of s and b . Mathematics Subject Classification (2020) . Primary 35Q55; Secondary 35A01.
Sobolev空间中非齐次双调和非线性Schrödinger方程的局部适定性
本文研究了d∈N, s≥0,0 < b < 4, σ > 0, λ∈R的非齐次双调和非线性Schr¨odinger (IBNLS)方程的Cauchy问题。在非线性项的一些正则性假设下,证明了当d∈N, 0≤s < min {2 + d 2,32 d}, 0 < b < min {4, d, 32 d - s, d 2 + 2 - s}和0 < σ < σ c (s)时IBNLS方程在H s (R d)中是局部适定的。如果s < d2,则σ c (s) = 8−2 b d−2 s,如果s≥d2,则σ c (s) =∞。我们的局部适定性结果改进了Guzm´an-Pastor[非线性分析]的结果。[J] .中国科学:自然科学,2016,35(1):1 - 4。微分方程296(2021)335-368]通过扩展s和b的有效性。数学学科分类(2020)。主要35 q55;二次35 a01。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信