Scaled Fisher consistency for the partial likelihood estimation in various extensions of the Cox model

Q4 Mathematics
T. Bednarski, Piotr B. Nowak, Magdalena Skolimowska-Kulig
{"title":"Scaled Fisher consistency for the partial likelihood estimation in various extensions of the Cox model","authors":"T. Bednarski, Piotr B. Nowak, Magdalena Skolimowska-Kulig","doi":"10.2478/stattrans-2022-0023","DOIUrl":null,"url":null,"abstract":"Abstract The Cox proportional hazards model has become the most widely used procedure in survival analysis. The theoretical basis of the original model has been developed in various extensions. In the recent years, vital research has been undertaken involving the incorporation of random effects to survival models. In this setting, the random effect is a variable (frailty) which embraces a variation among individuals or groups of individuals which cannot be explained by observable covariates. The right choice of the frailty distribution is essential for an accurate description of the dependence structure present in the data. In this paper, we aim to investigate the accuracy of inference based on the primer Cox model in the existence of unobserved heterogeneity, that is, when the data generating mechanism is more complex than presumed and described by the kind of an extension of the Cox model with undefined frailty. We show that the conventional partial likelihood estimator under the considered extension is Fisher-consistent up to a scaling factor, provided symmetry-type distributional assumptions on covariates. We also present the results of simulation experiments that reveal an exemplary behaviour of the estimators.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":"23 1","pages":"185 - 196"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The Cox proportional hazards model has become the most widely used procedure in survival analysis. The theoretical basis of the original model has been developed in various extensions. In the recent years, vital research has been undertaken involving the incorporation of random effects to survival models. In this setting, the random effect is a variable (frailty) which embraces a variation among individuals or groups of individuals which cannot be explained by observable covariates. The right choice of the frailty distribution is essential for an accurate description of the dependence structure present in the data. In this paper, we aim to investigate the accuracy of inference based on the primer Cox model in the existence of unobserved heterogeneity, that is, when the data generating mechanism is more complex than presumed and described by the kind of an extension of the Cox model with undefined frailty. We show that the conventional partial likelihood estimator under the considered extension is Fisher-consistent up to a scaling factor, provided symmetry-type distributional assumptions on covariates. We also present the results of simulation experiments that reveal an exemplary behaviour of the estimators.
Cox模型各种扩展中偏似然估计的标度Fisher一致性
Cox比例风险模型已成为生存分析中应用最广泛的方法。原始模型的理论基础在各种扩展中得到了发展。近年来,人们进行了一些重要的研究,包括将随机效应纳入生存模型。在这种情况下,随机效应是一种变量(脆弱性),它包含个体或个体群体之间的变化,这种变化不能用可观察到的协变量来解释。正确选择脆弱分布对于准确描述数据中存在的依赖结构至关重要。在本文中,我们的目的是研究在未观察到异质性存在的情况下,即当数据生成机制比假设的更复杂,并且由具有未定义脆弱性的Cox模型的一种扩展描述时,基于引物Cox模型的推理的准确性。在对协变量的对称型分布假设下,我们证明了在考虑的扩展下,传统的部分似然估计在一个比例因子内是费雪一致的。我们还提出了模拟实验的结果,揭示了估计器的示范行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Transition
Statistics in Transition Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信