Some Observations on the Laplacian-Energy-Like Invariant of Trees

IF 1 Q1 MATHEMATICS
M. Matejic, S. Altindag, I. Milovanovic, E. Milovanovic
{"title":"Some Observations on the Laplacian-Energy-Like Invariant of Trees","authors":"M. Matejic, S. Altindag, I. Milovanovic, E. Milovanovic","doi":"10.47443/dml.2022.089","DOIUrl":null,"url":null,"abstract":"Let G be a graph of order n . Denote by A the adjacency matrix of G and by D = diag ( d 1 , . . . , d n ) the diagonal matrix of vertex degrees of G . The Laplacian matrix of G is defined as L = D − A . Let µ 1 , µ 2 , · · · , µ n − 1 , µ n be eigenvalues of L satisfying µ 1 ≥ µ 2 ≥ · · · ≥ µ n − 1 ≥ µ n = 0 . The Laplacian-energy–like invariant is a graph invariant defined as LEL ( G ) = (cid:80) n − 1 i =1 √ µ i . Improved upper bounds for LEL ( G ) are obtained and compared when G has a tree structure.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph of order n . Denote by A the adjacency matrix of G and by D = diag ( d 1 , . . . , d n ) the diagonal matrix of vertex degrees of G . The Laplacian matrix of G is defined as L = D − A . Let µ 1 , µ 2 , · · · , µ n − 1 , µ n be eigenvalues of L satisfying µ 1 ≥ µ 2 ≥ · · · ≥ µ n − 1 ≥ µ n = 0 . The Laplacian-energy–like invariant is a graph invariant defined as LEL ( G ) = (cid:80) n − 1 i =1 √ µ i . Improved upper bounds for LEL ( G ) are obtained and compared when G has a tree structure.
关于树的拉普拉斯类能不变量的一些观察
设G是一个n阶的图。用A表示G的邻接矩阵,用D = diag (d1,…)表示。(n) G的顶点度数的对角矩阵。G的拉普拉斯矩阵定义为L = D−A。设µ1、µ2、···、µn−1、µn为L满足µ1≥µ2≥···≥µn−1≥µn = 0的特征值。拉普拉斯类能不变量是定义为LEL (G) = (cid:80) n−1 i =1√µi的图不变量。得到了改进的LEL (G)上界,并比较了G为树形结构时LEL (G)的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信