Multi-component stress-strength model for Weibull distribution in progressively censored samples

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Kohansal, S. Shoaee, S. Nadarajah
{"title":"Multi-component stress-strength model for Weibull distribution in progressively censored samples","authors":"A. Kohansal, S. Shoaee, S. Nadarajah","doi":"10.1515/strm-2020-0030","DOIUrl":null,"url":null,"abstract":"Abstract One of the important issues is risk assessment and calculation in complex and multi-component systems. In this paper, the estimation of multi-component stress-strength reliability for the Weibull distribution under the progressive Type-II censored samples is studied. We assume that both stress and strength are two independent Weibull distributions with different parameters. First, assuming the same shape parameter, the maximum likelihood estimation (MLE), different approximations of Bayes estimators (Lindley’s approximation and Markov chain Monte Carlo method) and different confidence intervals (asymptotic and highest posterior density) are obtained. In the case when the shape parameter is known, the MLE, uniformly minimum variance unbiased estimator (UMVUE), exact Bayes estimator and different confidence intervals (asymptotic and highest posterior density) are considered. Finally, in the general case, the statistical inferences on multi-component stress-strength reliability are derived. To compare the performances of different methods, Monte Carlo simulations are performed. Moreover, one data set for illustrative purposes is analyzed.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2020-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract One of the important issues is risk assessment and calculation in complex and multi-component systems. In this paper, the estimation of multi-component stress-strength reliability for the Weibull distribution under the progressive Type-II censored samples is studied. We assume that both stress and strength are two independent Weibull distributions with different parameters. First, assuming the same shape parameter, the maximum likelihood estimation (MLE), different approximations of Bayes estimators (Lindley’s approximation and Markov chain Monte Carlo method) and different confidence intervals (asymptotic and highest posterior density) are obtained. In the case when the shape parameter is known, the MLE, uniformly minimum variance unbiased estimator (UMVUE), exact Bayes estimator and different confidence intervals (asymptotic and highest posterior density) are considered. Finally, in the general case, the statistical inferences on multi-component stress-strength reliability are derived. To compare the performances of different methods, Monte Carlo simulations are performed. Moreover, one data set for illustrative purposes is analyzed.
渐进式截尾样本威布尔分布的多分量应力-强度模型
摘要复杂和多组分系统的风险评估和计算是一个重要问题。本文研究了渐进II型截尾样本下威布尔分布的多分量应力强度可靠性的估计问题。我们假设应力和强度都是具有不同参数的两个独立的威布尔分布。首先,假设形状参数相同,得到最大似然估计(MLE)、贝叶斯估计量的不同近似(Lindley近似和马尔可夫链蒙特卡罗方法)和不同的置信区间(渐近和最高后验密度)。在形状参数已知的情况下,考虑了MLE、一致最小方差无偏估计量(UMVUE)、精确贝叶斯估计量和不同的置信区间(渐近和最高后验密度)。最后,在一般情况下,推导了多分量应力强度可靠性的统计推断。为了比较不同方法的性能,进行了蒙特卡罗模拟。此外,还分析了一个用于说明目的的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信