{"title":"COMPARATIVE ANALYSIS OF ENERGY DETECTION AND ARTIFICIAL NEURAL NETWORK FOR SPECTRUM SENSING IN COGNITIVE RADIO","authors":"Sanjog Shah, R. Yelalwar","doi":"10.21917/ijct.2019.0284","DOIUrl":null,"url":null,"abstract":"In today’s wireless communication technology, spectrum occupancy is one of the major challenge. To perform all the task in wireless communication intelligently, Cognitive Radio (CR) is used. With the help of machine learning techniques, performance of CR will increase. In this paper, implementation of spectrum sensing (SS) in Cognitive Radio Network (CRN) is presented. To check the availability of spectrum, the supervised Machine Learning (ML) and conventional spectrum sensing method is used. To classify signal and noise, the Artificial Neural Network (ANN) classifier is used. The classifier’s result shows better result than conventional method’s result.","PeriodicalId":30618,"journal":{"name":"ICTACT Journal on Communication Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijct.2019.0284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In today’s wireless communication technology, spectrum occupancy is one of the major challenge. To perform all the task in wireless communication intelligently, Cognitive Radio (CR) is used. With the help of machine learning techniques, performance of CR will increase. In this paper, implementation of spectrum sensing (SS) in Cognitive Radio Network (CRN) is presented. To check the availability of spectrum, the supervised Machine Learning (ML) and conventional spectrum sensing method is used. To classify signal and noise, the Artificial Neural Network (ANN) classifier is used. The classifier’s result shows better result than conventional method’s result.