Can polylogarithms at algebraic points be linearly independent?

Q4 Mathematics
Sinnou David, Noriko Hirata-Kohno, M. Kawashima
{"title":"Can polylogarithms at algebraic points be linearly independent?","authors":"Sinnou David, Noriko Hirata-Kohno, M. Kawashima","doi":"10.2140/moscow.2020.9.389","DOIUrl":null,"url":null,"abstract":"Let $r,m$ be positive integers. Let $0\\le x <1$ be a rational number. Let $\\Phi_s(x,z)$ be the $s$-th Lerch function $\\sum_{k=0}^{\\infty}\\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\\ldots ,r$. When $x=0$, this is the polylogarithmic function. Let $\\alpha_1,\\ldots ,\\alpha_m$ be pairwise distinct algebraic numbers with $0<|\\alpha_j|<1$ $(1 \\le j \\le m)$. In this article, we state a linear independence criterion over algebraic number fields of all the $rm+1$ numbers $:$ $\\Phi_1(x,\\alpha_1),\\Phi_2(x,\\alpha_1),\\ldots, \\Phi_r(x,\\alpha_1),\\Phi_1(x,\\alpha_2),\\Phi_2(x,\\alpha_2),\\ldots, \\Phi_r(x,\\alpha_2),\\ldots,\\Phi_1(x,\\alpha_m),\\Phi_2(x,\\alpha_m),\\ldots, \\Phi_r(x,\\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the $r$ Lerch functions $\\Phi_1(x,z),\\Phi_2(x,z),\\ldots, \\Phi_r(x,z)$ at $m$ distinct algebraic points without any assumption for $r$ and $m$, even for the case $x=0$, the polylogarithms. We give an outline of our proof and explain basic idea.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

Let $r,m$ be positive integers. Let $0\le x <1$ be a rational number. Let $\Phi_s(x,z)$ be the $s$-th Lerch function $\sum_{k=0}^{\infty}\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\ldots ,r$. When $x=0$, this is the polylogarithmic function. Let $\alpha_1,\ldots ,\alpha_m$ be pairwise distinct algebraic numbers with $0<|\alpha_j|<1$ $(1 \le j \le m)$. In this article, we state a linear independence criterion over algebraic number fields of all the $rm+1$ numbers $:$ $\Phi_1(x,\alpha_1),\Phi_2(x,\alpha_1),\ldots, \Phi_r(x,\alpha_1),\Phi_1(x,\alpha_2),\Phi_2(x,\alpha_2),\ldots, \Phi_r(x,\alpha_2),\ldots,\Phi_1(x,\alpha_m),\Phi_2(x,\alpha_m),\ldots, \Phi_r(x,\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the $r$ Lerch functions $\Phi_1(x,z),\Phi_2(x,z),\ldots, \Phi_r(x,z)$ at $m$ distinct algebraic points without any assumption for $r$ and $m$, even for the case $x=0$, the polylogarithms. We give an outline of our proof and explain basic idea.
代数点上的多对数是线性无关的吗?
设$r,m$为正整数。设$0\lex<1$为有理数。设$\Phi_s(x,z)$为第$s$个Lerch函数$\sum_{k=0}^{infty}\tfrac{z^{k+1}}{(k+x+1)^s}$,其中$s=1,2,\ldots,r$。当$x=0$时,这是一个多对数函数。设$\alpha_1,\ldots,\alpha_m$是成对不同的代数数,$0<|\alpha_j|<1$$(1\le j\le m)$。在本文中,我们陈述了所有$rm+1$数字$的代数数域的线性独立性准则:$$\Phi_1(x,\alpha_1),\Phi_2(x,\alpha_1 1美元。这是第一个结果,它给出了$r$Lerch函数$\Phi_1(x,z),\Phi_2(x,z),\ldots,\Phi_r(x,z)$的值在$m$不同代数点处线性独立的充分条件,而没有对$r$和$m$的任何假设,即使对于$x=0$的情况,也没有多对数。我们给出了我们的证明的大纲,并解释了基本思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信