M. Vivas-Cortez, Martin Patricio Árciga, Juan Carlos Najera, J. E. Hernández
{"title":"On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative","authors":"M. Vivas-Cortez, Martin Patricio Árciga, Juan Carlos Najera, J. E. Hernández","doi":"10.1515/dema-2022-0212","DOIUrl":null,"url":null,"abstract":"Abstract The fundamental objective of this article is to investigate about the boundary value problem with the uses of a generalized conformable fractional derivative introduced by Zarikaya et al. (On generalized the conformable calculus, TWMS J. App. Eng. Math. 9 (2019), no. 4, 792–799, http://jaem.isikun.edu.tr/web/images/articles/vol.9.no.4/11.pdf). In the development of the this article, by using classical methods of fractional calculus, we find a definition of the generalized fractional Wronskian according to the fractional differential operator defined by Zarikaya, a fractional version of the Sturm-Picone theorem, and in addition, the stability criterion given by the Hyers-Ulam theorem is studied with the use of the aforementioned fractional derivatives.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The fundamental objective of this article is to investigate about the boundary value problem with the uses of a generalized conformable fractional derivative introduced by Zarikaya et al. (On generalized the conformable calculus, TWMS J. App. Eng. Math. 9 (2019), no. 4, 792–799, http://jaem.isikun.edu.tr/web/images/articles/vol.9.no.4/11.pdf). In the development of the this article, by using classical methods of fractional calculus, we find a definition of the generalized fractional Wronskian according to the fractional differential operator defined by Zarikaya, a fractional version of the Sturm-Picone theorem, and in addition, the stability criterion given by the Hyers-Ulam theorem is studied with the use of the aforementioned fractional derivatives.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.