{"title":"Optimization of the Process Parameters of Resistance Spot Welding of AISI 316l Sheets Using Taguchi Method","authors":"P. Muthu","doi":"10.2478/mme-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Resistance spot welding (RSW) is a fabrication process that is being used in the automobile and aerospace industry since many years for joining low carbon or “mild” steel. Quality and strength of the welds depend upon the process parameters of RSW. The most effective parameters in this process are: current intensity, welding time, sheet thickness and material, geometry of electrodes, electrode force, and current shunting. This paper presents the experimental investigations for the optimization of tensile shear stress of RSW for stainless steel grade 316L sheets by using Taguchi method. The experiments were conducted using Taguchi’s L27 orthogonal array under varying process parameters, namely electrode diameter, welding current, and heating time. The experimental data were analyzed using signal-to-noise ratio (S/N ratio) to find the optimal process parameters. Analysis of variance (ANOVA) and F test were used to find the most significant parameters affecting the spot weld quality characteristics. Confirmation tests with optimal process parameters were conducted to validate the test results. From the results, it was found that it is possible to increase tensile shear stress significantly.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":"23 1","pages":"64 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract Resistance spot welding (RSW) is a fabrication process that is being used in the automobile and aerospace industry since many years for joining low carbon or “mild” steel. Quality and strength of the welds depend upon the process parameters of RSW. The most effective parameters in this process are: current intensity, welding time, sheet thickness and material, geometry of electrodes, electrode force, and current shunting. This paper presents the experimental investigations for the optimization of tensile shear stress of RSW for stainless steel grade 316L sheets by using Taguchi method. The experiments were conducted using Taguchi’s L27 orthogonal array under varying process parameters, namely electrode diameter, welding current, and heating time. The experimental data were analyzed using signal-to-noise ratio (S/N ratio) to find the optimal process parameters. Analysis of variance (ANOVA) and F test were used to find the most significant parameters affecting the spot weld quality characteristics. Confirmation tests with optimal process parameters were conducted to validate the test results. From the results, it was found that it is possible to increase tensile shear stress significantly.