A time-periodic oscillatory hexagonal solution in a 2-dimensional integro-differential reaction-diffusion system

IF 0.5 4区 数学 Q3 MATHEMATICS
Shunsuke Kobayashi, T. Sakamoto, Yasuhide Uegata, S. Yazaki
{"title":"A time-periodic oscillatory hexagonal solution in a 2-dimensional integro-differential reaction-diffusion system","authors":"Shunsuke Kobayashi, T. Sakamoto, Yasuhide Uegata, S. Yazaki","doi":"10.32917/hmj/1595901630","DOIUrl":null,"url":null,"abstract":"An oscillatory hexagonal solution in a two component reaction-di¤usion system with a non-local term is studied. By applying the center manifold theory, we obtain a four-dimensional dynamical system that informs us about the bifurcation structure around the trivial solution. Our results suggest that the oscillatory hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf bifurcation. This provides a reasonable explanation for the existence of the oscillatory hexagon.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/hmj/1595901630","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An oscillatory hexagonal solution in a two component reaction-di¤usion system with a non-local term is studied. By applying the center manifold theory, we obtain a four-dimensional dynamical system that informs us about the bifurcation structure around the trivial solution. Our results suggest that the oscillatory hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf bifurcation. This provides a reasonable explanation for the existence of the oscillatory hexagon.
二维积分-微分反应-扩散系统的时间周期振荡六方解
研究了一类具有非局域项的双组分反应扩散体系的振荡六方解。通过应用中心流形理论,我们得到了一个四维动力系统,它告诉我们围绕平凡解的分岔结构。我们的结果表明振荡六边形解可以通过Hopf分岔从静止六边形解分叉。这为振荡六边形的存在提供了一个合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信