Tree convolution for probability distributions with unbounded support

Pub Date : 2021-02-01 DOI:10.30757/alea.v18-58
E. Davis, David Jekel, Zhichao Wang
{"title":"Tree convolution for probability distributions\nwith unbounded support","authors":"E. Davis, David Jekel, Zhichao Wang","doi":"10.30757/alea.v18-58","DOIUrl":null,"url":null,"abstract":"We develop the complex-analytic viewpoint on the tree convolutions studied by the second author and Weihua Liu in\"An operad of non-commutative independences defined by trees\"(Dissertationes Mathematicae, 2020, doi:10.4064/dm797-6-2020), which generalize the free, boolean, monotone, and orthogonal convolutions. In particular, for each rooted subtree $\\mathcal{T}$ of the $N$-regular tree (with vertices labeled by alternating strings), we define the convolution $\\boxplus_{\\mathcal{T}}(\\mu_1,\\dots,\\mu_N)$ for arbitrary probability measures $\\mu_1$, ..., $\\mu_N$ on $\\mathbb{R}$ using a certain fixed-point equation for the Cauchy transforms. The convolution operations respect the operad structure of the tree operad from doi:10.4064/dm797-6-2020. We prove a general limit theorem for iterated $\\mathcal{T}$-free convolution similar to Bercovici and Pata's results in the free case in\"Stable laws and domains of attraction in free probability\"(Annals of Mathematics, 1999, doi:10.2307/121080), and we deduce limit theorems for measures in the domain of attraction of each of the classical stable laws.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v18-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the complex-analytic viewpoint on the tree convolutions studied by the second author and Weihua Liu in"An operad of non-commutative independences defined by trees"(Dissertationes Mathematicae, 2020, doi:10.4064/dm797-6-2020), which generalize the free, boolean, monotone, and orthogonal convolutions. In particular, for each rooted subtree $\mathcal{T}$ of the $N$-regular tree (with vertices labeled by alternating strings), we define the convolution $\boxplus_{\mathcal{T}}(\mu_1,\dots,\mu_N)$ for arbitrary probability measures $\mu_1$, ..., $\mu_N$ on $\mathbb{R}$ using a certain fixed-point equation for the Cauchy transforms. The convolution operations respect the operad structure of the tree operad from doi:10.4064/dm797-6-2020. We prove a general limit theorem for iterated $\mathcal{T}$-free convolution similar to Bercovici and Pata's results in the free case in"Stable laws and domains of attraction in free probability"(Annals of Mathematics, 1999, doi:10.2307/121080), and we deduce limit theorems for measures in the domain of attraction of each of the classical stable laws.
分享
查看原文
具有无界支持的概率分布的树卷积
我们发展了第二作者和刘卫华在《树定义的非交换独立算子》(数学论文,2020,doi:10.4064/dm797-6-2020)中研究的树卷积的复分析观点,推广了自由卷积、布尔卷积、单调卷积和正交卷积。特别地,对于$N$正则树的每个根子树$\mathcal{T}$(顶点由交替字符串标记),我们定义了任意概率测度$\ma_1$,…的卷积$\boxplus_{\mathcal{T}}(\mu_1,\dots,\mu_N)$$\mu_N$在$\mathbb{R}$上使用Cauchy变换的特定定点方程。卷积运算遵循doi:10.4064/dm797-6-2020中的树运算器的运算器结构。我们证明了迭代$\mathcal{T}$自由卷积的一个一般极限定理,类似于Bercovici和Pata在“自由概率中的稳定定律和吸引域”(Annals of Mathematics,1999,doi:10.2307/12180)中在自由情况下的结果,并推导出每个经典稳定定律在吸引域中的测度的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信