W-weighted GDMP inverse for rectangular matrices

Pub Date : 2022-10-06 DOI:10.13001/ela.2022.7015
Amit Kumar, Vaibhav Shekhar, Debasisha Mishra
{"title":"W-weighted GDMP inverse for rectangular matrices","authors":"Amit Kumar, Vaibhav Shekhar, Debasisha Mishra","doi":"10.13001/ela.2022.7015","DOIUrl":null,"url":null,"abstract":"In this article, we introduce two new generalized inverses for rectangular matrices called $W$-weighted generalized-Drazin--Moore--Penrose (GDMP) and $W$-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain assumptions. We also obtain a representation of $W$-weighted GDMP inverse employing EP-core nilpotent decomposition. We define the dual of $W$-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse- and forward-order laws for GD, $W$-weighted GD, GDMP, and $W$-weighted GDMP generalized inverses.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we introduce two new generalized inverses for rectangular matrices called $W$-weighted generalized-Drazin--Moore--Penrose (GDMP) and $W$-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain assumptions. We also obtain a representation of $W$-weighted GDMP inverse employing EP-core nilpotent decomposition. We define the dual of $W$-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse- and forward-order laws for GD, $W$-weighted GD, GDMP, and $W$-weighted GDMP generalized inverses.
分享
查看原文
矩形矩阵的w加权GDMP逆
在本文中,我们引入了矩形矩阵的两个新的广义逆,即$W$-加权广义- drazin -Moore- Penrose (GDMP)逆和$W$-加权广义- drazin -自反(GDR)逆。第一个广义逆可以看作是将最近引入的方形矩阵的GDMP逆推广到矩形矩阵。第二类广义逆包含了第一类广义逆。然后我们利用它们的各种性质,并在一定的假设下证明了所提出的广义逆与不同的已知广义逆是一致的。我们还利用ep核幂零分解得到了W加权gdp逆的表示。我们定义了$W$加权GDMP逆的对偶,并得到了类似的结果。进一步,我们讨论了GD、$W$加权GD、$W$加权GDMP和$W$加权GDMP广义逆的加性、逆序和正序定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信