Existence and uniqueness results for fourth-order four-point BVP arising in bridge design in the presence of reverse ordered upper and lower solutions

Pub Date : 2023-08-04 DOI:10.58997/ejde.2023.51
Nazia Urus, Amit Verma
{"title":"Existence and uniqueness results for fourth-order four-point BVP arising in bridge design in the presence of reverse ordered upper and lower solutions","authors":"Nazia Urus, Amit Verma","doi":"10.58997/ejde.2023.51","DOIUrl":null,"url":null,"abstract":"In this article, we establish the existence of solutions for a fourth-order four-point non-linear boundary value problem (BVP) which arises in bridge design, $$\\displaylines{ - y^{(4)}( s)-\\lambda y''( s)=\\mathcal{F}( s, y( s)), \\quad s\\in(0,1),\\cry(0)=0,\\quad y(1)= \\delta_1 y(\\eta_1)+\\delta_2 y(\\eta_2),\\cr y''(0)=0,\\quad y''(1)= \\delta_1 y''(\\eta_1)+\\delta_2 y''(\\eta_2), }$$ where \\(\\mathcal{F} \\in C([0,1]\\times \\mathbb{R},\\mathbb{R})\\), \\(\\delta_1, \\delta_2>0\\), \\(0<\\eta_1\\le \\eta_2 <1\\), \\(\\lambda=\\zeta_1+\\zeta_2 \\), where \\(\\zeta_1\\) and \\(\\zeta_2\\) are the real constants. We have explored all gathered \\(0<\\zeta_1<\\zeta_2\\), \\(\\zeta_1<0<\\zeta_2\\), and \\( \\zeta_1<\\zeta_2<0 \\). We extend the monotone iterative technique and establish the existence results with reverse ordered upper and lower solutions to fourth-orderfour-point non-linear BVPs. \nFor more information see https://ejde.math.txstate.edu/Volumes/2023/51/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we establish the existence of solutions for a fourth-order four-point non-linear boundary value problem (BVP) which arises in bridge design, $$\displaylines{ - y^{(4)}( s)-\lambda y''( s)=\mathcal{F}( s, y( s)), \quad s\in(0,1),\cry(0)=0,\quad y(1)= \delta_1 y(\eta_1)+\delta_2 y(\eta_2),\cr y''(0)=0,\quad y''(1)= \delta_1 y''(\eta_1)+\delta_2 y''(\eta_2), }$$ where \(\mathcal{F} \in C([0,1]\times \mathbb{R},\mathbb{R})\), \(\delta_1, \delta_2>0\), \(0<\eta_1\le \eta_2 <1\), \(\lambda=\zeta_1+\zeta_2 \), where \(\zeta_1\) and \(\zeta_2\) are the real constants. We have explored all gathered \(0<\zeta_1<\zeta_2\), \(\zeta_1<0<\zeta_2\), and \( \zeta_1<\zeta_2<0 \). We extend the monotone iterative technique and establish the existence results with reverse ordered upper and lower solutions to fourth-orderfour-point non-linear BVPs. For more information see https://ejde.math.txstate.edu/Volumes/2023/51/abstr.html
分享
查看原文
桥梁设计中存在逆序上下解的四阶四点BVP问题的存在唯一性结果
在这篇文章中,我们建立了一个在桥梁设计中出现的四阶四点非线性边值问题(BVP)的解的存在性,$$\displaylines{-y^{(4)}(s)-\lambda y''(s)=\mathcal{F}(s,y(s)),\quad s\In(0,1),\cry(0)=0,\ quad y(1)=\ delta_1 yΔ2 y’’(\eta_2),}$$,其中C中的\(\mathcal{F}\([0,1]\times\mathbb{R},\mathbb{R})\),\(\delta_1,\delta_2>0\),\(0<\eta_1\le\eta_2<1\),\(\lambda=\zeta_1+\zeta_2\),其中\(\zeta_1)和\(\zeta_2\。我们已经探索了所有收集的\(0<\zeta_1<\zeta_2\)、\(\zeta-1<0<\zeta_2\)和\(\zeta_1<\ zeta_2<0\)。我们推广了单调迭代技术,并建立了四阶四点非线性边值问题逆序上下解的存在性结果。有关更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/51/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信