Long Twins in Random Words

Pub Date : 2023-05-23 DOI:10.1007/s00026-023-00651-5
Andrzej Dudek, Jarosław Grytczuk, Andrzej Ruciński
{"title":"Long Twins in Random Words","authors":"Andrzej Dudek,&nbsp;Jarosław Grytczuk,&nbsp;Andrzej Ruciński","doi":"10.1007/s00026-023-00651-5","DOIUrl":null,"url":null,"abstract":"<div><p><i>Twins</i> in a finite word are formed by a pair of identical subwords placed at disjoint sets of positions. We investigate the maximum length of twins in <i>a random</i> word over a <i>k</i>-letter alphabet. The obtained lower bounds for small values of <i>k</i> significantly improve the best estimates known in the deterministic case. Bukh and Zhou in 2016 showed that every ternary word of length <i>n</i> contains twins of length at least 0.34<i>n</i>. Our main result states that in a random ternary word of length <i>n</i>, with high probability, one can find twins of length at least 0.41<i>n</i>. In the general case of alphabets of size <span>\\(k\\geqslant 3\\)</span> we obtain analogous lower bounds of the form <span>\\(\\frac{1.64}{k+1}n\\)</span> which are better than the known deterministic bounds for <span>\\(k\\leqslant 354\\)</span>. In addition, we present similar results for <i>multiple</i> twins in random words.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00651-5.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00651-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twins in a finite word are formed by a pair of identical subwords placed at disjoint sets of positions. We investigate the maximum length of twins in a random word over a k-letter alphabet. The obtained lower bounds for small values of k significantly improve the best estimates known in the deterministic case. Bukh and Zhou in 2016 showed that every ternary word of length n contains twins of length at least 0.34n. Our main result states that in a random ternary word of length n, with high probability, one can find twins of length at least 0.41n. In the general case of alphabets of size \(k\geqslant 3\) we obtain analogous lower bounds of the form \(\frac{1.64}{k+1}n\) which are better than the known deterministic bounds for \(k\leqslant 354\). In addition, we present similar results for multiple twins in random words.

Abstract Image

分享
查看原文
随机词中的长双胞胎
有限字中的孪晶是由放置在不相交的位置集的一对相同的子字形成的。我们研究了k字母表上一个随机单词中双胞胎的最大长度。所获得的k的小值的下界显著改进了在确定性情况下已知的最佳估计。Bukh和Zhou在2016年发现,每个长度为n的三元词都包含长度至少为0.34n的孪晶,我们可以找到长度至少为0.41n的孪晶。在大小为\(k\geqslant 3\)的字母表的一般情况下,我们得到了形式为\(\frac{1.64}{k+1}n\)的类似下界,该下界优于\(k\ leqslant 354\)的已知确定性界。此外,我们在随机单词中对多对双胞胎给出了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信