Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, B. Kijsirikul, P. Vateekul
{"title":"Enhancing Lifelong Language Learning by Improving Pseudo-Sample Generation","authors":"Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, B. Kijsirikul, P. Vateekul","doi":"10.1162/coli_a_00449","DOIUrl":null,"url":null,"abstract":"Abstract To achieve lifelong language learning, pseudo-rehearsal methods leverage samples generated from a language model to refresh the knowledge of previously learned tasks. Without proper controls, however, these methods could fail to retain the knowledge of complex tasks with longer texts since most of the generated samples are low in quality. To overcome the problem, we propose three specific contributions. First, we utilize double language models, each of which specializes in a specific part of the input, to produce high-quality pseudo samples. Second, we reduce the number of parameters used by applying adapter modules to enhance training efficiency. Third, we further improve the overall quality of pseudo samples using temporal ensembling and sample regeneration. The results show that our framework achieves significant improvement over baselines on multiple task sequences. Also, our pseudo sample analysis reveals helpful insights for designing even better pseudo-rehearsal methods in the future.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"48 1","pages":"819-848"},"PeriodicalIF":3.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00449","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract To achieve lifelong language learning, pseudo-rehearsal methods leverage samples generated from a language model to refresh the knowledge of previously learned tasks. Without proper controls, however, these methods could fail to retain the knowledge of complex tasks with longer texts since most of the generated samples are low in quality. To overcome the problem, we propose three specific contributions. First, we utilize double language models, each of which specializes in a specific part of the input, to produce high-quality pseudo samples. Second, we reduce the number of parameters used by applying adapter modules to enhance training efficiency. Third, we further improve the overall quality of pseudo samples using temporal ensembling and sample regeneration. The results show that our framework achieves significant improvement over baselines on multiple task sequences. Also, our pseudo sample analysis reveals helpful insights for designing even better pseudo-rehearsal methods in the future.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.